Menu Close

let-a-gt-0-find-the-value-of-f-a-0-e-t-2-a-t-2-dt-




Question Number 37635 by math khazana by abdo last updated on 16/Jun/18
let a>0  find the value of   f(a) = ∫_0 ^(+∞)  e^(−(t^2   +(a/t^2 ))) dt
leta>0findthevalueoff(a)=0+e(t2+at2)dt
Commented by prof Abdo imad last updated on 17/Jun/18
we have 2f(a)= ∫_(−∞) ^(+∞)   e^(−{ (t −((√a)/t))^2  +2(√a)}) dt  =e^(−2(√a))   ∫_(−∞) ^(+∞)   e^(−(t−((√a)/t))^2 ) dt  changement  t −((√a)/t)=x give t^2  −(√a) =xt ⇒  t^2  −xt −(√a) =0  Δ=x^2  +4(√(a ))⇒t_1 = ((x +(√(x^2  +4(√a))))/2)  t_2 =((x−(√(x^2  +4(√a))))/2) let take t= ((x +(√(x^(2 )  +4(√a))))/2) ⇒  dt = (1/2){1 +  (x/( (√(x^2  +4(√a)))))} ⇒  2f(a) = (e^(−2(√a)) /2) ∫_(−∞) ^(+∞)   e^(−x^2 ) { 1+ (x/( (√(x^2  +4(√a)))))}dx  = (e^(−2(√a)) /2) ∫_(−∞) ^(+∞)  e^(−x^2 ) dx  + (e^(−2(√a)) /2) ∫_(−∞) ^(+∞)    ((x e^(−x^2 ) )/( (√(x^2  +4(√a)))))dx  =(((√π) e^(−2(√a)) )/2) +0 ⇒  f(a) = (e^(−2(√a)) /4) (√(π )).
wehave2f(a)=+e{(tat)2+2a}dt=e2a+e(tat)2dtchangementtat=xgivet2a=xtt2xta=0Δ=x2+4at1=x+x2+4a2t2=xx2+4a2lettaket=x+x2+4a2dt=12{1+xx2+4a}2f(a)=e2a2+ex2{1+xx2+4a}dx=e2a2+ex2dx+e2a2+xex2x2+4adx=πe2a2+0f(a)=e2a4π.

Leave a Reply

Your email address will not be published. Required fields are marked *