Menu Close

Let-a-gt-0-g-x-n-Z-exp-x-n-2-a-Find-the-Fourier-coefficients-of-g-and-deduce-that-for-x-R-n-Z-exp-pin-2-x-2-x-n-Z-exp-pin-2-x-2-




Question Number 120528 by snipers237 last updated on 01/Nov/20
Let  a>0 , g(x)=Σ_(n∈Z) exp(−(((x−n)^2 )/a))  Find the Fourier coefficients of   g  and deduce that for x∈R^∗    Σ_(n∈Z) exp(−((πn^2 )/x^2 ))= x .Σ_(n∈Z) exp(−πn^2 x^2 )
$${Let}\:\:{a}>\mathrm{0}\:,\:{g}\left({x}\right)=\underset{{n}\in\mathbb{Z}} {\sum}{exp}\left(−\frac{\left({x}−{n}\right)^{\mathrm{2}} }{{a}}\right) \\ $$$${Find}\:{the}\:{Fourier}\:{coefficients}\:{of}\:\:\:{g} \\ $$$${and}\:{deduce}\:{that}\:{for}\:{x}\in\mathbb{R}^{\ast} \\ $$$$\:\underset{{n}\in\mathbb{Z}} {\sum}{exp}\left(−\frac{\pi{n}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)=\:{x}\:.\underset{{n}\in\mathbb{Z}} {\sum}{exp}\left(−\pi{n}^{\mathrm{2}} {x}^{\mathrm{2}} \right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *