Menu Close

let-a-gt-2-and-f-a-1-a-1-a-x-2-dx-1-x-2-1-x-2-1-calculate-f-a-interms-of-a-2-calculate-f-a-




Question Number 49638 by maxmathsup by imad last updated on 08/Dec/18
let a>2 and f(a) =∫_(−(1/a)) ^(1/a)    ((x^2 dx)/( (√(1+x^2 ))+(√(1−x^2 ))))  1) calculate f(a) interms of a  2) calculate f^′ (a) .
leta>2andf(a)=1a1ax2dx1+x2+1x21)calculatef(a)intermsofa2)calculatef(a).
Answered by Smail last updated on 08/Dec/18
f(a)=∫_(−1/a) ^(1/a) ((x^2 ((√(1+x^2 ))−(√(1−x^2 ))))/((1+x^2 )−(1−x^2 )))dx  =∫_(−1/a) ^(1/a) ((x^2 ((√(1+x^2 ))−(√(1−x^2 ))))/(2x^2 ))dx  =(1/2)∫_(−1/a) ^(1/a) ((√(1+x^2 ))−(√(1−x^2 )))dx  (1/2)∫_(−1/a) ^(1/a) (√(1+x^2 ))dx−(1/2)∫_(−1/a) ^(1/a) (√(1−x^2 ))dx  x=sinh(t)   and  x=sin(u)  f(a)=(1/2)∫_(sinh^(−1) (−1/a)) ^(sinh^(−1) (1/a)) cosh^2 (t)dt−(1/2)∫_(sin^(−1) (−1/a)) ^(sin^(−1) (1/a)) cos^2 (u)du  =(1/4)[((sinh(2t))/2)+t]_(sinh^(−1) (−1/a)) ^(sinh^(−1) (1/a)) −(1/4)[((cos(2u))/2)+u]_(sin^(−1) (−1/a)) ^(sin^(−1) (1/a))   =(1/2)((1/a)(√(1+((1/a))^2 ))+sinh^(−1) (1/a))−(1/2)((1/a)(√(1−(1/a^2 )))+sin^(−1) (1/a))  f(a)=(1/2)(((√(a^2 +1))/a^2 )+sinh^(−1) ((1/a))−((√(a^2 −1))/a^2 )−sin^(−1) (1/a))
f(a)=1/a1/ax2(1+x21x2)(1+x2)(1x2)dx=1/a1/ax2(1+x21x2)2x2dx=121/a1/a(1+x21x2)dx121/a1/a1+x2dx121/a1/a1x2dxx=sinh(t)andx=sin(u)f(a)=12sinh1(1/a)sinh1(1/a)cosh2(t)dt12sin1(1/a)sin1(1/a)cos2(u)du=14[sinh(2t)2+t]sinh1(1/a)sinh1(1/a)14[cos(2u)2+u]sin1(1/a)sin1(1/a)=12(1a1+(1a)2+sinh1(1/a))12(1a11a2+sin1(1/a))f(a)=12(a2+1a2+sinh1(1a)a21a2sin1(1/a))

Leave a Reply

Your email address will not be published. Required fields are marked *