Menu Close

Let-a-gt-b-gt-1-be-positive-integers-with-b-odd-Let-n-be-a-positive-integer-as-well-If-b-n-divides-a-n-1-prove-that-a-b-gt-3-n-n-Solution-please-Thanks-in-advance-




Question Number 31868 by 6123 last updated on 16/Mar/18
Let a>b>1 be positive integers with b odd.  Let n be a positive integer as well. If  b^n  divides  a^n −1, prove that a^b  > (3^n /n).  Solution please. Thanks in advance!!
$${Let}\:{a}>{b}>\mathrm{1}\:{be}\:{positive}\:{integers}\:{with}\:{b}\:{odd}. \\ $$$${Let}\:{n}\:{be}\:{a}\:{positive}\:{integer}\:{as}\:{well}.\:{If}\:\:{b}^{{n}} \:{divides} \\ $$$${a}^{{n}} −\mathrm{1},\:{prove}\:{that}\:{a}^{{b}} \:>\:\frac{\mathrm{3}^{{n}} }{{n}}. \\ $$$${Solution}\:{please}.\:{Thanks}\:{in}\:{advance}!! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *