Menu Close

let-a-gt-b-gt-c-gt-0-solve-in-R-ax-by-cz-a-bx-cy-az-b-cx-ay-bz-c-




Question Number 158724 by HongKing last updated on 08/Nov/21
let  a>b>c>0  solve in R   { ((ax + by + cz = a)),((bx + cy + az = b)),((cx + ay + bz = c)) :}
leta>b>c>0solveinR{ax+by+cz=abx+cy+az=bcx+ay+bz=c
Answered by ajfour last updated on 08/Nov/21
x+y+z=1  ax+by+c(1−x−y)=a  ⇒ (a−c)x+(b−c)y=a−c  x+(((b−c)/(a−c)))y=1  (a−c)x+(b−a)y     +(c−b)(1−x−y)=a−c  ⇒ (a+b−2c)x+(2b−a−c)y                =a+b−2c  ⇒ x−y=1  ⇒  y+1+(((b−c)/(a−c)))y=1  ⇒  y=0,  x=1, z=0 ∙
x+y+z=1ax+by+c(1xy)=a(ac)x+(bc)y=acx+(bcac)y=1(ac)x+(ba)y+(cb)(1xy)=ac(a+b2c)x+(2bac)y=a+b2cxy=1y+1+(bcac)y=1y=0,x=1,z=0
Commented by HongKing last updated on 08/Nov/21
thank you dear Ser cool
thankyoudearSercool
Answered by som(math1967) last updated on 08/Nov/21
D= determinant ((a,b,c),(b,c,a),(c,a,b))=a(bc−a^2 )−b(b^2 −ca)+c(ab−c^2 )  =3abc−a^3 −b^3 −c^3   D_1 = determinant ((a,b,c),((b ),c,a),(c,a,b))=abc−a^3 −b^3 +abc+abc−c^3   =3abc−a^3 −b^3 −c^3   D_2 = determinant ((a,a,c),(b,b,a),(c,c,b))=0 [C_(1,) C_2  identical]  D_3 = determinant ((a,b,a),(b,c,b),(c,a,c))=0[C_1 ,C_3  identical]  x=(D_1 /D)=1,y=(D_2 /D)=0,z=(D_3 /D)=0  a>b>c>0 ∴( 3abc−a^3 −b^3 −c^3 )≠0
D=|abcbcacab|=a(bca2)b(b2ca)+c(abc2)=3abca3b3c3D1=|abcbcacab|=abca3b3+abc+abcc3=3abca3b3c3D2=|aacbbaccb|=0[C1,C2identical]D3=|ababcbcac|=0[C1,C3identical]x=D1D=1,y=D2D=0,z=D3D=0a>b>c>0(3abca3b3c3)0
Commented by HongKing last updated on 08/Nov/21
thank you dear Ser cool
thankyoudearSercool

Leave a Reply

Your email address will not be published. Required fields are marked *