Menu Close

let-a-is-complex-number-such-that-a-10-a-5-1-0-find-a-2005-1-a-2005-




Question Number 92839 by i jagooll last updated on 09/May/20
let a is complex number such   that a^(10)  + a^5  +1 = 0.  find a^(2005)  + (1/a^(2005) ) ?
$$\mathrm{let}\:\mathrm{a}\:\mathrm{is}\:\mathrm{complex}\:\mathrm{number}\:\mathrm{such}\: \\ $$$$\mathrm{that}\:\mathrm{a}^{\mathrm{10}} \:+\:\mathrm{a}^{\mathrm{5}} \:+\mathrm{1}\:=\:\mathrm{0}. \\ $$$$\mathrm{find}\:\mathrm{a}^{\mathrm{2005}} \:+\:\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2005}} }\:? \\ $$
Answered by john santu last updated on 09/May/20
set a^5  = w ⇒ w^2 +w+1 = 0  w^2 +w+1 = ((w^3 −1)/(w−1)) = 0  ⇒a^(10) +a^5 +1 = ((a^(15) −1)/(a^5 −1)) = 0  a^(15)  = 1 ⇒ since 2005 = 133×15+10  a^(2005)  = (a^(15) )^(133)  ×a^(10)  = 1×a^(10)  = a^(10)   then a^(2005)  +(1/a^(2005) ) = a^(10) +(1/a^(10) )  = a^(10)  +((a^(15)  )/a^(10) ) = a^(10) +a^5   = −1  [ a^(10) +a^5 +1  = 0 ]
$$\mathrm{set}\:{a}^{\mathrm{5}} \:=\:{w}\:\Rightarrow\:{w}^{\mathrm{2}} +{w}+\mathrm{1}\:=\:\mathrm{0} \\ $$$${w}^{\mathrm{2}} +{w}+\mathrm{1}\:=\:\frac{{w}^{\mathrm{3}} −\mathrm{1}}{{w}−\mathrm{1}}\:=\:\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{10}} +{a}^{\mathrm{5}} +\mathrm{1}\:=\:\frac{{a}^{\mathrm{15}} −\mathrm{1}}{{a}^{\mathrm{5}} −\mathrm{1}}\:=\:\mathrm{0} \\ $$$${a}^{\mathrm{15}} \:=\:\mathrm{1}\:\Rightarrow\:\mathrm{since}\:\mathrm{2005}\:=\:\mathrm{133}×\mathrm{15}+\mathrm{10} \\ $$$${a}^{\mathrm{2005}} \:=\:\left({a}^{\mathrm{15}} \right)^{\mathrm{133}} \:×{a}^{\mathrm{10}} \:=\:\mathrm{1}×{a}^{\mathrm{10}} \:=\:{a}^{\mathrm{10}} \\ $$$$\mathrm{then}\:{a}^{\mathrm{2005}} \:+\frac{\mathrm{1}}{{a}^{\mathrm{2005}} }\:=\:{a}^{\mathrm{10}} +\frac{\mathrm{1}}{{a}^{\mathrm{10}} } \\ $$$$=\:{a}^{\mathrm{10}} \:+\frac{{a}^{\mathrm{15}} \:}{{a}^{\mathrm{10}} }\:=\:{a}^{\mathrm{10}} +{a}^{\mathrm{5}} \\ $$$$=\:−\mathrm{1}\:\:\left[\:{a}^{\mathrm{10}} +{a}^{\mathrm{5}} +\mathrm{1}\:\:=\:\mathrm{0}\:\right]\: \\ $$
Commented by i jagooll last updated on 09/May/20
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$
Commented by peter frank last updated on 09/May/20
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *