let-a-lt-1-and-f-a-0-1-ln-x-ln-1-ax-dx-1-find-a-explicit-form-of-f-a-2-calculate-g-a-0-1-xln-x-1-ax-dx-3-calculate-0-1-ln-x-ln-2-x-dx-4-calculate-0-1-xln-x-2-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 45235 by maxmathsup by imad last updated on 10/Oct/18 let∣a∣<1andf(a)=∫01ln(x)ln(1+ax)dx1)findaexplicitformoff(a)2)calculateg(a)=∫01xln(x)1+axdx3)calculate∫01ln(x)ln(2+x)dx4)calculate∫01xln(x)2+xdx5)calculateun=∫01xln(x)n+xdxwithnintegrandn>1findnatureoftheserieΣun Commented by maxmathsup by imad last updated on 13/Oct/18 1)wehaveln′(1+u)=∑n=0∞(−1)nunwith∣u∣<1⇒ln(1+u)=∑n=0∞(−1)nun+1n+1=∑n=1∞(−1)n−1unn⇒ln(1+ax)=∑n=1∞(−1)n−1anxnn⇒f(a)=∫01ln(x){∑n=1∞(−1)n−1anxnn}dx=∑n=1∞(−1)n−1ann∫01xnln(x)dxbypartsAn=∫01xnln(x)dx=[1n+1xn+1ln(x)]01−∫011n+1xndx=−1(n+1)2⇒f(a)=∑n=1∞(−1)nan1n(n+1)2letdecomposeF(x)=1x(x+1)2⇒F(x)=ax+bx+1+c(x+1)2c=limx→−1(x+1)2F(x)=−1a=limx→0xF(x)=1⇒F(x)=1x+bx+1−1(x+1)2F(2)=118=12+b3−19⇒1=9+6b−2⇒1=7+6b⇒1−7=6b⇒b=−1⇒F(x)=1x−1x+1−1(x+1)2⇒f(a)=∑n=1∞(−a)n{1n−1n+1−1(n+1)2}=∑n=1∞(−a)nn−∑n=1∞(−a)nn+1−∑n=1∞(−a)n(n+1)2but∑n=1∞(−a)nn=−ln(1+a)∑n=1∞(−a)nn+1=∑n=2∞(−a)n−1n=−1a{∑n=1∞(−a)nn−1}=−1a{−ln(1+a)−1}=1a+ln(1+a)a⇒f(a)=−ln(1+a)−ln(1+a)a−1a−∑n=2∞(−a)n−1n2f(a)=−(1+1a)ln(1+a)−1a−∑n=2∞(−a)n−1n2 Commented by maxmathsup by imad last updated on 13/Oct/18 2)wehavef(a)=∫01ln(x)ln(1+ax)dx⇒f′(a)=∫01xln(x)1+axdx=g(a)butf(a)=−(1+1a)ln(1+a)−1a−∑n=2∞(−a)n−1n2⇒f′(a)=1a2ln(1+a)−(a+1a)11+a+1a2−w′(a)withw(a)=∑n=2∞(−a)n−1n2=ln(1+a)a2−1a+1a2−w′(a)butw(a)=∑n=2∞(−1)n−1an−1n2duetouniformconvegencewegetw′(a)=∑n=2∞(n−1)(−1)n−1an−2n2=∑n=2∞(−1)n−1an−2n−∑n=2∞(−1)n−1an−2n2….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-1-ln-x-ln-1-x-dx-Next Next post: calculate-n-2-1-n-3-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.