Menu Close

let-a-lt-1-and-f-a-0-1-ln-x-ln-1-ax-dx-1-find-a-explicit-form-of-f-a-2-calculate-g-a-0-1-xln-x-1-ax-dx-3-calculate-0-1-ln-x-ln-2-x-dx-4-calculate-0-1-xln-x-2-x-




Question Number 45235 by maxmathsup by imad last updated on 10/Oct/18
let ∣a∣<1 and  f(a)=∫_0 ^1 ln(x)ln(1+ax)dx  1) find a explicit form of f(a)  2) calculate  g(a) =∫_0 ^1   ((xln(x))/(1+ax))dx  3) calculate ∫_0 ^1 ln(x)ln(2+x)dx  4) calculate ∫_0 ^1    ((xln(x))/(2+x))dx   5) calculate u_n =∫_0 ^1   ((xln(x))/(n+x))dx with n integr and n>1  find nature of the serie Σ u_n
leta∣<1andf(a)=01ln(x)ln(1+ax)dx1)findaexplicitformoff(a)2)calculateg(a)=01xln(x)1+axdx3)calculate01ln(x)ln(2+x)dx4)calculate01xln(x)2+xdx5)calculateun=01xln(x)n+xdxwithnintegrandn>1findnatureoftheserieΣun
Commented by maxmathsup by imad last updated on 13/Oct/18
1) we have ln^′ (1+u)=Σ_(n=0) ^∞ (−1)^n u^n   with ∣u∣<1 ⇒  ln(1+u) =Σ_(n=0) ^∞ (((−1)^n u^(n+1) )/(n+1)) =Σ_(n=1) ^∞  (−1)^(n−1)  (u^n /n) ⇒  ln(1+ax) =Σ_(n=1) ^∞  (−1)^(n−1)  ((a^n x^n )/n) ⇒f(a) =∫_0 ^1 ln(x){Σ_(n=1) ^∞ (−1)^(n−1)  ((a^n x^n )/n)}dx  =Σ_(n=1) ^∞   (−1)^(n−1) (a^n /n) ∫_0 ^1  x^n ln(x)dx  by parts  A_n =∫_0 ^1  x^n ln(x)dx =[(1/(n+1))x^(n+1) ln(x)]_0 ^1  −∫_0 ^1 (1/(n+1)) x^n dx  =−(1/((n+1)^2 )) ⇒f(a) = Σ_(n=1) ^∞  (−1)^n a^n  (1/(n(n+1)^2 )) let decompose  F(x) =(1/(x(x+1)^2 )) ⇒F(x) = (a/x) +(b/(x+1)) +(c/((x+1)^2 ))  c =lim_(x→−1) (x+1)^2 F(x) =−1  a =lim_(x→0)  xF(x) =1  ⇒F(x) =(1/x) +(b/(x+1)) −(1/((x+1)^2 ))  F(2) =(1/(18)) =(1/2) +(b/3) −(1/9) ⇒1=9+6b−2 ⇒1=7+6b ⇒1−7=6b ⇒b=−1  ⇒F(x)=(1/x)−(1/(x+1)) −(1/((x+1)^2 )) ⇒  f(a) =Σ_(n=1) ^∞   (−a)^n {(1/n) −(1/(n+1)) −(1/((n+1)^2 ))}  =Σ_(n=1) ^∞  (((−a)^n )/n) −Σ_(n=1) ^∞   (((−a)^n )/(n+1)) −Σ_(n=1) ^∞   (((−a)^n )/((n+1)^2 ))  but  Σ_(n=1) ^∞   (((−a)^n )/n) = −ln(1+a)  Σ_(n=1) ^∞   (((−a)^n )/(n+1)) =Σ_(n=2) ^∞   (((−a)^(n−1) )/n) =−(1/a){Σ_(n=1) ^∞  (((−a)^n )/n) −1}  =−(1/a){−ln(1+a)−1} =(1/a) +((ln(1+a))/a) ⇒  f(a) =−ln(1+a)−((ln(1+a))/a) −(1/a) −Σ_(n=2) ^∞  (((−a)^(n−1) )/n^2 )  f(a) =−(1+(1/a))ln(1+a) −(1/a) −Σ_(n=2) ^∞   (((−a)^(n−1) )/n^2 )
1)wehaveln(1+u)=n=0(1)nunwithu∣<1ln(1+u)=n=0(1)nun+1n+1=n=1(1)n1unnln(1+ax)=n=1(1)n1anxnnf(a)=01ln(x){n=1(1)n1anxnn}dx=n=1(1)n1ann01xnln(x)dxbypartsAn=01xnln(x)dx=[1n+1xn+1ln(x)]01011n+1xndx=1(n+1)2f(a)=n=1(1)nan1n(n+1)2letdecomposeF(x)=1x(x+1)2F(x)=ax+bx+1+c(x+1)2c=limx1(x+1)2F(x)=1a=limx0xF(x)=1F(x)=1x+bx+11(x+1)2F(2)=118=12+b3191=9+6b21=7+6b17=6bb=1F(x)=1x1x+11(x+1)2f(a)=n=1(a)n{1n1n+11(n+1)2}=n=1(a)nnn=1(a)nn+1n=1(a)n(n+1)2butn=1(a)nn=ln(1+a)n=1(a)nn+1=n=2(a)n1n=1a{n=1(a)nn1}=1a{ln(1+a)1}=1a+ln(1+a)af(a)=ln(1+a)ln(1+a)a1an=2(a)n1n2f(a)=(1+1a)ln(1+a)1an=2(a)n1n2
Commented by maxmathsup by imad last updated on 13/Oct/18
2) we have f(a) =∫_0 ^1 ln(x)ln(1+ax)dx ⇒  f^′ (a) =  ∫_0 ^1    ((xln(x))/(1+ax)) dx =g(a)  but f(a)=−(1+(1/a))ln(1+a)−(1/a) −Σ_(n=2) ^∞ (((−a)^(n−1) )/n^2 )  ⇒f^′ (a) =(1/a^2 )ln(1+a)−(((a+1)/a))(1/(1+a)) +(1/a^2 ) −w^′ (a) withw(a)=Σ_(n=2) ^∞  (((−a)^(n−1) )/n^2 )  =((ln(1+a))/a^2 ) −(1/a) +(1/a^2 ) −w^′ (a)  but  w(a) =Σ_(n=2) ^∞  (−1)^(n−1)    (a^(n−1) /n^2 )  due to uniform convegence we get  w^′ (a) =Σ_(n=2) ^∞  (n−1)(−1)^(n−1)   (a^(n−2) /n^2 ) =Σ_(n=2) ^∞ (−1)^(n−1)  (a^(n−2) /n)  −Σ_(n=2) ^∞   (−1)^(n−1)    (a^(n−2) /n^2 ) ....be continued...
2)wehavef(a)=01ln(x)ln(1+ax)dxf(a)=01xln(x)1+axdx=g(a)butf(a)=(1+1a)ln(1+a)1an=2(a)n1n2f(a)=1a2ln(1+a)(a+1a)11+a+1a2w(a)withw(a)=n=2(a)n1n2=ln(1+a)a21a+1a2w(a)butw(a)=n=2(1)n1an1n2duetouniformconvegencewegetw(a)=n=2(n1)(1)n1an2n2=n=2(1)n1an2nn=2(1)n1an2n2.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *