Menu Close

let-A-n-0-1-e-nx-arctan-2-n-2-1-dx-calculate-lim-n-A-n-




Question Number 61981 by maxmathsup by imad last updated on 13/Jun/19
let A_n =āˆ«_0 ^1  e^(nx)  arctan((2/(n^2  +1)))dx   calculate lim_(nā†’āˆž)  A_n
$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{nx}} \:{arctan}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} \:+\mathrm{1}}\right){dx}\:\:\:{calculate}\:{lim}_{{n}\rightarrow\infty} \:{A}_{{n}} \\ $$
Commented by maxmathsup by imad last updated on 13/Jun/19
A_n =āˆ«_0 ^1  e^(nx) arctan((2/(n^2 x+1)))dx
$${A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{nx}} {arctan}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} {x}+\mathrm{1}}\right){dx}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *