Menu Close

let-A-n-0-1-x-n-e-x-dx-1-calculate-A-1-and-A-2-2-prove-that-A-n-1-n-1-A-n-1-e-3-calculate-A-3-A-4-and-A-5-4-calculate-I-0-1-x-3-2x-2-x-e-x-dx-




Question Number 40136 by maxmathsup by imad last updated on 16/Jul/18
let A_n = ∫_0 ^1  x^n  e^(−x) dx  1) calculate A_1    and A_2   2) prove that   A_(n+1) =(n+1)A_n  −(1/e)  3) calculate A_3    , A_4 , and A_5   4) calculate I = ∫_0 ^1 (−x^3  +2x^(2 )  −x)e^(−x)  dx
$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{e}^{−{x}} {dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{\mathrm{1}} \:\:\:{and}\:{A}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\:{A}_{{n}+\mathrm{1}} =\left({n}+\mathrm{1}\right){A}_{{n}} \:−\frac{\mathrm{1}}{{e}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{A}_{\mathrm{3}} \:\:\:,\:{A}_{\mathrm{4}} ,\:{and}\:{A}_{\mathrm{5}} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(−{x}^{\mathrm{3}} \:+\mathrm{2}{x}^{\mathrm{2}\:} \:−{x}\right){e}^{−{x}} \:{dx} \\ $$
Answered by math khazana by abdo last updated on 21/Jul/18
1) A_1 = ∫_0 ^1  x e^(−x) dx =[−xe^(−x) ]_0 ^1  +∫_0 ^1   e^(−x) dx  =−e^(−1)   +[−e^(−x) ]_0 ^1 =−e^(−1)  +1−e^(−1) =1−2e^(−1)   A_1 =1−(2/e)  A_2 = ∫_0 ^1  x^2  e^(−x) dx =[−x^2 e^(−x) ]_0 ^1  +∫_0 ^1  2x e^(−x) dx  =−e^(−1)  +2A_1 =−e^(−1)  +2(1−(2/e) )=−e^(−1) +2−(4/e)  A_2 =2−(5/e)  2) by parts u^′ =x^n    and v=e^(−x)  ⇒  A_n =[(1/(n+1))x^(n+1)  e^(−x) ]_0 ^1  +∫_0 ^1  (x^(n+1) /(n+1)) e^(−x) dx  = (1/((n+1)e))  +(1/(n+1)) A_(n+1)  ⇒  (n+1)A_n = (1/e) +A_(n+1)  ⇒  A_(n+1) =(n+1)A_n  −(1/e)  3) A_3 =3A_2  −(1/e) =3(2−(5/e))−(1/e)  A_3 = 6−((16)/e)  A_4 =4A_3  −(1/e) =4{6−((16)/e)}−(1/e)  A_4  =24 −((65)/e)  A_5 = 5A_4  −(1/e) =5{24−((65)/e)}−(1/e)  =120 −((5.65+1)/e) =120−((326)/e)
$$\left.\mathrm{1}\right)\:{A}_{\mathrm{1}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}\:{e}^{−{x}} {dx}\:=\left[−{xe}^{−{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{−{x}} {dx} \\ $$$$=−{e}^{−\mathrm{1}} \:\:+\left[−{e}^{−{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} =−{e}^{−\mathrm{1}} \:+\mathrm{1}−{e}^{−\mathrm{1}} =\mathrm{1}−\mathrm{2}{e}^{−\mathrm{1}} \\ $$$${A}_{\mathrm{1}} =\mathrm{1}−\frac{\mathrm{2}}{{e}} \\ $$$${A}_{\mathrm{2}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}} \:{e}^{−{x}} {dx}\:=\left[−{x}^{\mathrm{2}} {e}^{−{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{2}{x}\:{e}^{−{x}} {dx} \\ $$$$=−{e}^{−\mathrm{1}} \:+\mathrm{2}{A}_{\mathrm{1}} =−{e}^{−\mathrm{1}} \:+\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{2}}{{e}}\:\right)=−{e}^{−\mathrm{1}} +\mathrm{2}−\frac{\mathrm{4}}{{e}} \\ $$$${A}_{\mathrm{2}} =\mathrm{2}−\frac{\mathrm{5}}{{e}} \\ $$$$\left.\mathrm{2}\right)\:{by}\:{parts}\:{u}^{'} ={x}^{{n}} \:\:\:{and}\:{v}={e}^{−{x}} \:\Rightarrow \\ $$$${A}_{{n}} =\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \:{e}^{−{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:{e}^{−{x}} {dx} \\ $$$$=\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){e}}\:\:+\frac{\mathrm{1}}{{n}+\mathrm{1}}\:{A}_{{n}+\mathrm{1}} \:\Rightarrow \\ $$$$\left({n}+\mathrm{1}\right){A}_{{n}} =\:\frac{\mathrm{1}}{{e}}\:+{A}_{{n}+\mathrm{1}} \:\Rightarrow \\ $$$${A}_{{n}+\mathrm{1}} =\left({n}+\mathrm{1}\right){A}_{{n}} \:−\frac{\mathrm{1}}{{e}} \\ $$$$\left.\mathrm{3}\right)\:{A}_{\mathrm{3}} =\mathrm{3}{A}_{\mathrm{2}} \:−\frac{\mathrm{1}}{{e}}\:=\mathrm{3}\left(\mathrm{2}−\frac{\mathrm{5}}{{e}}\right)−\frac{\mathrm{1}}{{e}} \\ $$$${A}_{\mathrm{3}} =\:\mathrm{6}−\frac{\mathrm{16}}{{e}} \\ $$$${A}_{\mathrm{4}} =\mathrm{4}{A}_{\mathrm{3}} \:−\frac{\mathrm{1}}{{e}}\:=\mathrm{4}\left\{\mathrm{6}−\frac{\mathrm{16}}{{e}}\right\}−\frac{\mathrm{1}}{{e}} \\ $$$${A}_{\mathrm{4}} \:=\mathrm{24}\:−\frac{\mathrm{65}}{{e}} \\ $$$${A}_{\mathrm{5}} =\:\mathrm{5}{A}_{\mathrm{4}} \:−\frac{\mathrm{1}}{{e}}\:=\mathrm{5}\left\{\mathrm{24}−\frac{\mathrm{65}}{{e}}\right\}−\frac{\mathrm{1}}{{e}} \\ $$$$=\mathrm{120}\:−\frac{\mathrm{5}.\mathrm{65}+\mathrm{1}}{{e}}\:=\mathrm{120}−\frac{\mathrm{326}}{{e}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *