Menu Close

let-A-n-0-1-x-n-e-x-dx-1-calculate-A-1-and-A-2-2-prove-that-A-n-1-n-1-A-n-1-e-3-calculate-A-3-A-4-and-A-5-4-calculate-I-0-1-x-3-2x-2-x-e-x-dx-




Question Number 40136 by maxmathsup by imad last updated on 16/Jul/18
let A_n = ∫_0 ^1  x^n  e^(−x) dx  1) calculate A_1    and A_2   2) prove that   A_(n+1) =(n+1)A_n  −(1/e)  3) calculate A_3    , A_4 , and A_5   4) calculate I = ∫_0 ^1 (−x^3  +2x^(2 )  −x)e^(−x)  dx
letAn=01xnexdx1)calculateA1andA22)provethatAn+1=(n+1)An1e3)calculateA3,A4,andA54)calculateI=01(x3+2x2x)exdx
Answered by math khazana by abdo last updated on 21/Jul/18
1) A_1 = ∫_0 ^1  x e^(−x) dx =[−xe^(−x) ]_0 ^1  +∫_0 ^1   e^(−x) dx  =−e^(−1)   +[−e^(−x) ]_0 ^1 =−e^(−1)  +1−e^(−1) =1−2e^(−1)   A_1 =1−(2/e)  A_2 = ∫_0 ^1  x^2  e^(−x) dx =[−x^2 e^(−x) ]_0 ^1  +∫_0 ^1  2x e^(−x) dx  =−e^(−1)  +2A_1 =−e^(−1)  +2(1−(2/e) )=−e^(−1) +2−(4/e)  A_2 =2−(5/e)  2) by parts u^′ =x^n    and v=e^(−x)  ⇒  A_n =[(1/(n+1))x^(n+1)  e^(−x) ]_0 ^1  +∫_0 ^1  (x^(n+1) /(n+1)) e^(−x) dx  = (1/((n+1)e))  +(1/(n+1)) A_(n+1)  ⇒  (n+1)A_n = (1/e) +A_(n+1)  ⇒  A_(n+1) =(n+1)A_n  −(1/e)  3) A_3 =3A_2  −(1/e) =3(2−(5/e))−(1/e)  A_3 = 6−((16)/e)  A_4 =4A_3  −(1/e) =4{6−((16)/e)}−(1/e)  A_4  =24 −((65)/e)  A_5 = 5A_4  −(1/e) =5{24−((65)/e)}−(1/e)  =120 −((5.65+1)/e) =120−((326)/e)
1)A1=01xexdx=[xex]01+01exdx=e1+[ex]01=e1+1e1=12e1A1=12eA2=01x2exdx=[x2ex]01+012xexdx=e1+2A1=e1+2(12e)=e1+24eA2=25e2)bypartsu=xnandv=exAn=[1n+1xn+1ex]01+01xn+1n+1exdx=1(n+1)e+1n+1An+1(n+1)An=1e+An+1An+1=(n+1)An1e3)A3=3A21e=3(25e)1eA3=616eA4=4A31e=4{616e}1eA4=2465eA5=5A41e=5{2465e}1e=1205.65+1e=120326e

Leave a Reply

Your email address will not be published. Required fields are marked *