Menu Close

let-A-n-0-e-nx-2-sin-x-n-dx-with-n-integr-not-0-1-calculate-A-n-2-find-lim-n-A-n-




Question Number 37285 by math khazana by abdo last updated on 11/Jun/18
let A_n = ∫_0 ^∞   e^(−nx^2 ) sin((x/n))dx  with n integr not 0  1) calculate A_n   2) find lim_(n→+∞)  A_n
letAn=0enx2sin(xn)dxwithnintegrnot01)calculateAn2)findlimn+An
Commented by math khazana by abdo last updated on 14/Jun/18
A_n =∫_0 ^(+∞)  e^(−nx^2 )  cos( (x/n))dx .
An=0+enx2cos(xn)dx.
Commented by prof Abdo imad last updated on 16/Jun/18
changement (x/n)=t give  A_n = ∫_0 ^∞   e^(−nn^2 t^2 )  cos(t) ndt  =n ∫_0 ^∞    e^(−n^3 t^2 )  cost dt  =(n/2) ∫_(−∞) ^(+∞)   e^(−n^3 t^2  +it) dt  (2/n) A_n = ∫_(−∞) ^(+∞)   e^(−{(n(√n)t)^2 −it}) dt  =∫_(−∞) ^(+∞)    e^(−{ (n(√n)t)^2  −2 (i/(n(√n)))(n(√n)t) + ((i/(n(√n))))^2  −((i/(n(√n))))^2 }) dt  = ∫_(−∞) ^(+∞)    e^(−(n(√n) t −(i/(n(√n))))^2   −(1/n^3 ))  dt  =_(n(√n)t −(i/(n(√n))) = u) e^(−(1/n^3 ))  ∫_(−∞) ^(+∞)    e^(−u^2 )  du  = (√π)  e^(−(1/(n^3   )))   ⇒  A_n =((n(√π))/2) e^(−(1/(n^3   )))    .
changementxn=tgiveAn=0enn2t2cos(t)ndt=n0en3t2costdt=n2+en3t2+itdt2nAn=+e{(nnt)2it}dt=+e{(nnt)22inn(nnt)+(inn)2(inn)2}dt=+e(nntinn)21n3dt=nntinn=ue1n3+eu2du=πe1n3An=nπ2e1n3.
Commented by math khazana by abdo last updated on 17/Jun/18
2) its clear that lim_(n→+∞)  A_n  =+∞ .
2)itsclearthatlimn+An=+.

Leave a Reply

Your email address will not be published. Required fields are marked *