Menu Close

let-A-n-0-n-1-x-2-x-1-dx-1-calculate-A-n-2-find-lim-n-A-n-




Question Number 38804 by maxmathsup by imad last updated on 30/Jun/18
let  A_n = ∫_0 ^n    (((−1)^x )/(2[x] +1))dx  1) calculate A_n   2) find lim_(n→+∞)  A_n
letAn=0n(1)x2[x]+1dx1)calculateAn2)findlimn+An
Commented by math khazana by abdo last updated on 30/Jun/18
A_n = ∫_0 ^n    (((−1)^([x]) )/(2[x]+1))dx
An=0n(1)[x]2[x]+1dx
Commented by tanmay.chaudhury50@gmail.com last updated on 30/Jun/18
∫_0 ^1 (((−1)^0 )/(2×0+2))dx+∫_1 ^2 (((−1)^1 )/(2×1+1))+∫_2 ^3 (((−1)^2 )/(2×2))+...+
01(1)02×0+2dx+12(1)12×1+1+23(1)22×2++
Commented by math khazana by abdo last updated on 01/Jul/18
A_n =Σ_(k=0) ^(n−1)  ∫_k ^(k+1)  (((−1)^k )/(2k+1))dx =Σ_(k=0) ^(n−1)  (((−1)^k )/(2k+1))  2)lim_(n→+∞)  A_n = Σ_(k=0) ^∞   (((−1)^k )/(2k+1)) =(π/4) .
An=k=0n1kk+1(1)k2k+1dx=k=0n1(1)k2k+12)limn+An=k=0(1)k2k+1=π4.
Answered by tanmay.chaudhury50@gmail.com last updated on 30/Jun/18
∫_0 ^1 (((−1)^0 )/(2×0+1))dx+∫_1 ^2 (((−1)^1 )/(2×1+1))dx+∫_2 ^3 (((−1)^2 )/(2×2+1))dx+...   +∫_(n−1) ^n (((−1)^n )/(2(n−1)+1))dx  =(1/1)−(1/3)+(1/5)+...+(((−1)^n )/(2n−1))  2)we know tan^(−1) x=x−(x^3 /3)+(x^5 /5)−(x^7 /7)+...  so when n→∞  A_n →tan^(−1) (1)  so ans is   n→∞ A_n →(Π/4)
01(1)02×0+1dx+12(1)12×1+1dx+23(1)22×2+1dx++n1n(1)n2(n1)+1dx=1113+15++(1)n2n12)weknowtan1x=xx33+x55x77+sowhennAntan1(1)soansisnAnΠ4

Leave a Reply

Your email address will not be published. Required fields are marked *