Menu Close

let-A-n-0-n-1-x-x-2-x-dx-1-calculate-A-n-and-lim-n-A-n-2-let-S-n-n-0-n-A-n-dtudy-the-convergence-of-S-n-4-let-W-n-n-1-n-1-A-n-study-th




Question Number 39703 by math khazana by abdo last updated on 10/Jul/18
let  A_n = ∫_0 ^n    (((−1)^([x]) )/(x+2−[x]))dx  1)  calculate A_n    and lim_(n→+∞)   A_n    2) let S_n  =Σ_(n=0) ^n   A_n    dtudy the convergence of S_n   4) let  W_n = Σ_(n=1) ^n   (1/A_n )  study the convergence of W_n
letAn=0n(1)[x]x+2[x]dx1)calculateAnandlimn+An2)letSn=n=0nAndtudytheconvergenceofSn4)letWn=n=1n1AnstudytheconvergenceofWn
Commented by math khazana by abdo last updated on 13/Jul/18
1) we have A_n =Σ_(k=0) ^n   ∫_k ^(k+1)     (((−1)^k )/(x+2−k))dx  =Σ_(k=0) ^n  (−1)^k [ln∣x+2−k∣]_k ^(k+1)   = Σ_(k=0) ^n  (−1)^k {ln(k+1+2−k) −ln(k+2−k)  =Σ_(k=0) ^n (−1)^k {ln((3/2))}=ln((3/2))((1−(−1)^(n+1) )/2)  ⇒ A_n =(1/2)ln((3/2))(1−(−1)^(n+1) ) but the sequence  (−1)^n  is not convegent so  A_n is not convergent!  2) S_n  =Σ_(n=0) ^∞  A_n =Σ_(n=0) ^∞  (1/2)ln((3/2)){1+(−1)^n }  S_n  also diverges  4) we have A_n =0 if n even and A_n =ln((3/2)) if n  is odd so W_n  is not defined!
1)wehaveAn=k=0nkk+1(1)kx+2kdx=k=0n(1)k[lnx+2k]kk+1=k=0n(1)k{ln(k+1+2k)ln(k+2k)=k=0n(1)k{ln(32)}=ln(32)1(1)n+12An=12ln(32)(1(1)n+1)butthesequence(1)nisnotconvegentsoAnisnotconvergent!2)Sn=n=0An=n=012ln(32){1+(1)n}Snalsodiverges4)wehaveAn=0ifnevenandAn=ln(32)ifnisoddsoWnisnotdefined!

Leave a Reply

Your email address will not be published. Required fields are marked *