Menu Close

let-A-n-0-n-e-n-x-2-x-dx-with-n-integr-natural-1-calculate-A-n-2-find-lim-n-A-n-3-study-the-convergence-of-n-A-n-




Question Number 40040 by abdo mathsup 649 cc last updated on 15/Jul/18
let A_n = ∫_0 ^n   e^(−n( x+2−[x])) dx  with n integr natural  1) calculate A_n   2) find  lim_(n→+∞)  A_n   3) study the convergence of   Σ_n A_n
$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:{e}^{−{n}\left(\:{x}+\mathrm{2}−\left[{x}\right]\right)} {dx}\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{convergence}\:{of}\:\:\:\sum_{{n}} {A}_{{n}} \\ $$
Commented by abdo mathsup 649 cc last updated on 17/Jul/18
1) we have  A_n = Σ_(k=0) ^(n−1)   ∫_k ^(k+1)  e^(−n(x+2−k)) dx  = Σ_(k=0) ^(n−1)     e^(−n(2−k))   ∫_k ^(k+1)  e^(−nx) dx  =Σ_(k=0) ^(n−1)   e^(n(k−2))   [−(1/n) e^(−nx) ]_k ^(k+1)   = (1/n)Σ_(k=0) ^(n−1)   e^(n(k−2)) { e^(−nk)  −e^(−(n+1)k) }  =(1/n) Σ_(k=0) ^(n−1)   e^(−2n)    −(1/n) Σ_(k=0) ^(n−1)    e^(−2n−k)   = e^(−2n)    −(e^(−2n) /n) Σ_(k=0) ^(n−1)  (e^(−1) )^k   A_n =e^(−2n)   −(e^(−2n) /n) ((1−(e^(−1) )^n )/(1−e^(−1) ))  2) we have lim_(n→+∞)  e^(−2n)  =0  lim_(n→+∞)   (e^(−2n) /n) =0  and lim_(n→+∞)   ((1− e^(−n) )/(2−e^(−1) )) =(1/(1−e^(−1) ))  ⇒ lim_(n→+∞)   A_n =0  3) we have Σ_(n=1) ^∞  A_n = Σ_(n=1) ^∞  e^(−2n)  −(1/(1−e^(−1) ))Σ_(n=1) ^∞  (e^(−2n) /n)  + (1/(1−e^(−1) )) Σ_(n=1) ^∞   (e^(−3n) /n) but we have   Σ_(n=1) ^∞  e^(−2n)  =Σ_(n=1) ^∞  (e^(−2) )^n  =(1/(1−e^(−2) ))  Σ_(n=1) ^∞   (e^(−2n) /n) =Σ_(n=1) ^∞   (((e^(−2) )^n )/n) =−ln(1−e^(−2) )  Σ_(n=1) ^∞    (e^(−3n) /n) =−ln(1−e^(−3) ) ⇒Σ A_n  is convergent  and Σ_(n≥1)  A_n =  (1/(1−e^(−2) )) +(1/(1−e^(−1) ))ln(1−e^(−2) )  −(1/(1−e^(−1) ))ln(1−e^(−3) ) .
$$\left.\mathrm{1}\right)\:{we}\:{have}\:\:{A}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:{e}^{−{n}\left({x}+\mathrm{2}−{k}\right)} {dx} \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\:\:{e}^{−{n}\left(\mathrm{2}−{k}\right)} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:{e}^{−{nx}} {dx} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{e}^{{n}\left({k}−\mathrm{2}\right)} \:\:\left[−\frac{\mathrm{1}}{{n}}\:{e}^{−{nx}} \right]_{{k}} ^{{k}+\mathrm{1}} \\ $$$$=\:\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{e}^{{n}\left({k}−\mathrm{2}\right)} \left\{\:{e}^{−{nk}} \:−{e}^{−\left({n}+\mathrm{1}\right){k}} \right\} \\ $$$$=\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{e}^{−\mathrm{2}{n}} \:\:\:−\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\:{e}^{−\mathrm{2}{n}−{k}} \\ $$$$=\:{e}^{−\mathrm{2}{n}} \:\:\:−\frac{{e}^{−\mathrm{2}{n}} }{{n}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left({e}^{−\mathrm{1}} \right)^{{k}} \\ $$$${A}_{{n}} ={e}^{−\mathrm{2}{n}} \:\:−\frac{{e}^{−\mathrm{2}{n}} }{{n}}\:\frac{\mathrm{1}−\left({e}^{−\mathrm{1}} \right)^{{n}} }{\mathrm{1}−{e}^{−\mathrm{1}} } \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \:{e}^{−\mathrm{2}{n}} \:=\mathrm{0} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:\frac{{e}^{−\mathrm{2}{n}} }{{n}}\:=\mathrm{0}\:\:{and}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{\mathrm{1}−\:{e}^{−{n}} }{\mathrm{2}−{e}^{−\mathrm{1}} }\:=\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} } \\ $$$$\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:\:{A}_{{n}} =\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:{we}\:{have}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{A}_{{n}} =\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−\mathrm{2}{n}} \:−\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} }\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{e}^{−\mathrm{2}{n}} }{{n}} \\ $$$$+\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} }\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{−\mathrm{3}{n}} }{{n}}\:{but}\:{we}\:{have}\: \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−\mathrm{2}{n}} \:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\left({e}^{−\mathrm{2}} \right)^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}} } \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{−\mathrm{2}{n}} }{{n}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left({e}^{−\mathrm{2}} \right)^{{n}} }{{n}}\:=−{ln}\left(\mathrm{1}−{e}^{−\mathrm{2}} \right) \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{3}{n}} }{{n}}\:=−{ln}\left(\mathrm{1}−{e}^{−\mathrm{3}} \right)\:\Rightarrow\Sigma\:{A}_{{n}} \:{is}\:{convergent} \\ $$$${and}\:\sum_{{n}\geqslant\mathrm{1}} \:{A}_{{n}} =\:\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} }{ln}\left(\mathrm{1}−{e}^{−\mathrm{2}} \right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} }{ln}\left(\mathrm{1}−{e}^{−\mathrm{3}} \right)\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *