Menu Close

let-A-n-0-n-e-n-x-2-x-dx-with-n-integr-natural-1-calculate-A-n-2-find-lim-n-A-n-3-study-the-convergence-of-n-A-n-




Question Number 40040 by abdo mathsup 649 cc last updated on 15/Jul/18
let A_n = ∫_0 ^n   e^(−n( x+2−[x])) dx  with n integr natural  1) calculate A_n   2) find  lim_(n→+∞)  A_n   3) study the convergence of   Σ_n A_n
letAn=0nen(x+2[x])dxwithnintegrnatural1)calculateAn2)findlimn+An3)studytheconvergenceofnAn
Commented by abdo mathsup 649 cc last updated on 17/Jul/18
1) we have  A_n = Σ_(k=0) ^(n−1)   ∫_k ^(k+1)  e^(−n(x+2−k)) dx  = Σ_(k=0) ^(n−1)     e^(−n(2−k))   ∫_k ^(k+1)  e^(−nx) dx  =Σ_(k=0) ^(n−1)   e^(n(k−2))   [−(1/n) e^(−nx) ]_k ^(k+1)   = (1/n)Σ_(k=0) ^(n−1)   e^(n(k−2)) { e^(−nk)  −e^(−(n+1)k) }  =(1/n) Σ_(k=0) ^(n−1)   e^(−2n)    −(1/n) Σ_(k=0) ^(n−1)    e^(−2n−k)   = e^(−2n)    −(e^(−2n) /n) Σ_(k=0) ^(n−1)  (e^(−1) )^k   A_n =e^(−2n)   −(e^(−2n) /n) ((1−(e^(−1) )^n )/(1−e^(−1) ))  2) we have lim_(n→+∞)  e^(−2n)  =0  lim_(n→+∞)   (e^(−2n) /n) =0  and lim_(n→+∞)   ((1− e^(−n) )/(2−e^(−1) )) =(1/(1−e^(−1) ))  ⇒ lim_(n→+∞)   A_n =0  3) we have Σ_(n=1) ^∞  A_n = Σ_(n=1) ^∞  e^(−2n)  −(1/(1−e^(−1) ))Σ_(n=1) ^∞  (e^(−2n) /n)  + (1/(1−e^(−1) )) Σ_(n=1) ^∞   (e^(−3n) /n) but we have   Σ_(n=1) ^∞  e^(−2n)  =Σ_(n=1) ^∞  (e^(−2) )^n  =(1/(1−e^(−2) ))  Σ_(n=1) ^∞   (e^(−2n) /n) =Σ_(n=1) ^∞   (((e^(−2) )^n )/n) =−ln(1−e^(−2) )  Σ_(n=1) ^∞    (e^(−3n) /n) =−ln(1−e^(−3) ) ⇒Σ A_n  is convergent  and Σ_(n≥1)  A_n =  (1/(1−e^(−2) )) +(1/(1−e^(−1) ))ln(1−e^(−2) )  −(1/(1−e^(−1) ))ln(1−e^(−3) ) .
1)wehaveAn=k=0n1kk+1en(x+2k)dx=k=0n1en(2k)kk+1enxdx=k=0n1en(k2)[1nenx]kk+1=1nk=0n1en(k2){enke(n+1)k}=1nk=0n1e2n1nk=0n1e2nk=e2ne2nnk=0n1(e1)kAn=e2ne2nn1(e1)n1e12)wehavelimn+e2n=0limn+e2nn=0andlimn+1en2e1=11e1limn+An=03)wehaven=1An=n=1e2n11e1n=1e2nn+11e1n=1e3nnbutwehaven=1e2n=n=1(e2)n=11e2n=1e2nn=n=1(e2)nn=ln(1e2)n=1e3nn=ln(1e3)ΣAnisconvergentandn1An=11e2+11e1ln(1e2)11e1ln(1e3).

Leave a Reply

Your email address will not be published. Required fields are marked *