Menu Close

let-A-n-0-n-e-x-dx-with-n-integr-natural-1-calculate-A-n-2-find-lim-n-A-n-




Question Number 43170 by maxmathsup by imad last updated on 07/Sep/18
let A_n = ∫_0 ^∞   [n e^(−x) ]dx  with n integr natural.  1) calculate A_n   2) find lim_(n→+∞)  A_n .
letAn=0[nex]dxwithnintegrnatural.1)calculateAn2)findlimn+An.
Commented by alex041103 last updated on 08/Sep/18
is [] the whole part function  e.g. [2.67]=2???
is[]thewholepartfunctione.g.[2.67]=2???
Commented by maxmathsup by imad last updated on 08/Sep/18
look  sir alex for all x from R  x=[x] +r with  0≤r<1 and if x ∈Z  [x]=x   we have 2,67 =2 +0,67  and 0,67 ∈[0,1[ ⇒[2,67]=2 .also we have  [x]≤x<[x] +1 .
looksiralexforallxfromRx=[x]+rwith0r<1andifxZ[x]=xwehave2,67=2+0,67and0,67[0,1[[2,67]=2.alsowehave[x]x<[x]+1.
Commented by maxmathsup by imad last updated on 09/Sep/18
1) changement ne^(−x) =t give e^(−x) =(t/n)  ⇒−x =ln(t)−ln(n) ⇒−dx=(dt/t)  and A_n = −∫_0 ^n  [t](−(dt/t)) = ∫_0 ^n    (([t])/t)dt = Σ_(k=0) ^(n−1)   ∫_k ^(k+1)   (k/t)dt  =Σ_(k=0) ^(n−1)  k {ln(k+1)−ln(k)} = Σ_(k=1) ^n  k{ln(k+1)−ln(k)}  ⇒A_n = Σ_(k=1) ^n  k ln(((k+1)/k)) .  2) we have  A_n =Σ_(k=1) ^n  k ln(1+(1/k))    but    ln(1+x) = x−(x^2 /2) +o(x^3 )  x−(x^2 /2) ≤ln(1+x)≤x ⇒(1/k)−(1/(2k^2 ))≤ln(1+(1/k))≤(1/k) ⇒  k ln(1+(1/k))≥1− (1/(2k)) ⇒ A_n  ≥ Σ_(k=1) ^n (1−(1/(2k))) ⇒A_n ≥ n−(1/2) H_n   but H_n = ln(n)+γ +o((1/n)) ⇒n−(1/2) H_n =n−(1/2)ln(n)−(γ/2) +o((1/n)) but  lim_(n→+∞)   n−((ln(n))/2) =lim_(n→+∞)  n(1−((ln(n))/(2n)))=+∞ ⇒lim_(n→+∞) A_n =+∞ .
1)changementnex=tgiveex=tnx=ln(t)ln(n)dx=dttandAn=0n[t](dtt)=0n[t]tdt=k=0n1kk+1ktdt=k=0n1k{ln(k+1)ln(k)}=k=1nk{ln(k+1)ln(k)}An=k=1nkln(k+1k).2)wehaveAn=k=1nkln(1+1k)butln(1+x)=xx22+o(x3)xx22ln(1+x)x1k12k2ln(1+1k)1kkln(1+1k)112kAnk=1n(112k)Ann12HnbutHn=ln(n)+γ+o(1n)n12Hn=n12ln(n)γ2+o(1n)butlimn+nln(n)2=limn+n(1ln(n)2n)=+limn+An=+.
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Sep/18
∫_0 ^(log_e n) [ne^(−x) ]dx+∫_(log_e n) ^∞ [ne^(−x) ]dx  now ne^(−x) =1  e^(−x) =n^(−1)   e^x =n  x=log_e n  when x=log_e n  ne^(−x) =1  ∫_0 ^(log_e n) 1×dx+∫_0 ^∞ [ne^(−x) ]dx  =∣x∣_0 ^(log_e n) +0  =log_e n
0logen[nex]dx+logen[nex]dxnownex=1ex=n1ex=nx=logenwhenx=logennex=10logen1×dx+0[nex]dx=∣x0logen+0=logen

Leave a Reply

Your email address will not be published. Required fields are marked *