Question Number 43170 by maxmathsup by imad last updated on 07/Sep/18
![let A_n = ∫_0 ^∞ [n e^(−x) ]dx with n integr natural. 1) calculate A_n 2) find lim_(n→+∞) A_n .](https://www.tinkutara.com/question/Q43170.png)
Commented by alex041103 last updated on 08/Sep/18
![is [] the whole part function e.g. [2.67]=2???](https://www.tinkutara.com/question/Q43239.png)
Commented by maxmathsup by imad last updated on 08/Sep/18
![look sir alex for all x from R x=[x] +r with 0≤r<1 and if x ∈Z [x]=x we have 2,67 =2 +0,67 and 0,67 ∈[0,1[ ⇒[2,67]=2 .also we have [x]≤x<[x] +1 .](https://www.tinkutara.com/question/Q43243.png)
Commented by maxmathsup by imad last updated on 09/Sep/18
) = ∫_0 ^n (([t])/t)dt = Σ_(k=0) ^(n−1) ∫_k ^(k+1) (k/t)dt =Σ_(k=0) ^(n−1) k {ln(k+1)−ln(k)} = Σ_(k=1) ^n k{ln(k+1)−ln(k)} ⇒A_n = Σ_(k=1) ^n k ln(((k+1)/k)) . 2) we have A_n =Σ_(k=1) ^n k ln(1+(1/k)) but ln(1+x) = x−(x^2 /2) +o(x^3 ) x−(x^2 /2) ≤ln(1+x)≤x ⇒(1/k)−(1/(2k^2 ))≤ln(1+(1/k))≤(1/k) ⇒ k ln(1+(1/k))≥1− (1/(2k)) ⇒ A_n ≥ Σ_(k=1) ^n (1−(1/(2k))) ⇒A_n ≥ n−(1/2) H_n but H_n = ln(n)+γ +o((1/n)) ⇒n−(1/2) H_n =n−(1/2)ln(n)−(γ/2) +o((1/n)) but lim_(n→+∞) n−((ln(n))/2) =lim_(n→+∞) n(1−((ln(n))/(2n)))=+∞ ⇒lim_(n→+∞) A_n =+∞ .](https://www.tinkutara.com/question/Q43329.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Sep/18
![∫_0 ^(log_e n) [ne^(−x) ]dx+∫_(log_e n) ^∞ [ne^(−x) ]dx now ne^(−x) =1 e^(−x) =n^(−1) e^x =n x=log_e n when x=log_e n ne^(−x) =1 ∫_0 ^(log_e n) 1×dx+∫_0 ^∞ [ne^(−x) ]dx =∣x∣_0 ^(log_e n) +0 =log_e n](https://www.tinkutara.com/question/Q43325.png)