Menu Close

let-A-n-0-n-e-x-x-dx-1-calculate-A-n-2-find-lim-n-A-n-




Question Number 38101 by maxmathsup by imad last updated on 21/Jun/18
let  A_n = ∫_0 ^n   e^(x−[x]) dx  1) calculate A_n   2) find lim_(n→+∞)  A_n
letAn=0nex[x]dx1)calculateAn2)findlimn+An
Commented by prof Abdo imad last updated on 22/Jun/18
A_n =Σ_(k=0) ^(n−1)  ∫_k ^(k+1)  e^(−k)  e^x dx  =Σ_(k=0) ^(n−1)  e^(−k)   ( e^(k+1)  −e^k )  =Σ_(k=0) ^(n−1) (e −1)=(e−1)Σ_(k=0) ^(n−1) (1)=n(e−1)  A_n =n(e−1)  2)we have e−1>0 ⇒ lim_(n→+∞)  A_n =+∞.
An=k=0n1kk+1ekexdx=k=0n1ek(ek+1ek)=k=0n1(e1)=(e1)k=0n1(1)=n(e1)An=n(e1)2)wehavee1>0limn+An=+.

Leave a Reply

Your email address will not be published. Required fields are marked *