Menu Close

let-A-n-0-n-t-t-3-t-2-dt-1-calculate-lim-n-A-n-2-find-nature-if-A-n-




Question Number 57488 by Abdo msup. last updated on 05/Apr/19
let A_n =∫_0 ^n    ((t[t])/(3+t^2 ))dt  1)calculate lim_(n→+∞)   A_n   2) find nature if Σ A_n
letAn=0nt[t]3+t2dt1)calculatelimn+An2)findnatureifΣAn
Commented by maxmathsup by imad last updated on 06/Apr/19
1) we have A_n =Σ_(k=0) ^(n−1)  ∫_k ^(k+1)     ((tk)/(3+t^2 )) dt =Σ_(k=0) ^(n−1)  k  ∫_k ^(k+1)  ((tdt)/(t^2  +3))  =(1/2)Σ_(k=0) ^(n−1)  k [ ln(t^2  +3)]_k ^(k+1)  =(1/2) Σ_(k=0) ^(n−1)  k ln{(((k+1)^2  +3)/(k^2  +3))}  =(1/2) Σ_(k=0) ^(n−1)  k ln{((k^2  +3 +2k)/(k^2  +3))} =(1/2) Σ_(k=1) ^(n−1)  k ln{ 1+((2k)/(k^2  +3))} .  =(1/2){ln(1+(2/4)) +2 ln( 1+(4/7)) +3 ln(1+(6/(12)))+....+(n−1)ln(1+((2n−2)/((n−1)^2  +3)))}
1)wehaveAn=k=0n1kk+1tk3+t2dt=k=0n1kkk+1tdtt2+3=12k=0n1k[ln(t2+3)]kk+1=12k=0n1kln{(k+1)2+3k2+3}=12k=0n1kln{k2+3+2kk2+3}=12k=1n1kln{1+2kk2+3}.=12{ln(1+24)+2ln(1+47)+3ln(1+612)+.+(n1)ln(1+2n2(n1)2+3)}
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Apr/19
∫_0 ^n ((t[t])/(3+t^2 ))dt  (1/2)∫_0 ^1 ((d(3+t^2 ))/(3+t^2 ))×0+(1/2)∫_1 ^2 ((d(3+t^2 ))/(3+t^2 ))×1+(1/2)∫_2 ^3 ((d(3+t^2 ))/(3+t^2 ))×2dt+...+(1/2)∫_(n−1) ^n ((d(3+t^2 ))/(3+t^2 ))×(n−1)dt  =(1/2)[0×∣ln(3+t^2 )∣_0 ^1 +1×∣ln(3+t^2 )∣_1 ^2 +2×∣ln(3+t^2 )∣_2 ^3 +..+(n−1)∣ln(3+t^2 )∣_(n−1) ^n ]  =(1/2)Σ_(n=1) ^n (n−1)ln{((3+n^2 )/(3+(n−1)^2 ))}
0nt[t]3+t2dt1201d(3+t2)3+t2×0+1212d(3+t2)3+t2×1+1223d(3+t2)3+t2×2dt++12n1nd(3+t2)3+t2×(n1)dt=12[0×ln(3+t2)01+1×ln(3+t2)12+2×ln(3+t2)23+..+(n1)ln(3+t2)n1n]=12nn=1(n1)ln{3+n23+(n1)2}

Leave a Reply

Your email address will not be published. Required fields are marked *