let-A-n-0-n-x-x-2-dx-1-calculate-A-n-2-find-lim-n-A-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 38100 by maxmathsup by imad last updated on 21/Jun/18 letAn=∫0n(x−[x])2dx1)calculateAn2)findlimn→+∞An Commented by prof Abdo imad last updated on 22/Jun/18 An=∫0n(x2−2x[x]+[x]2)dx=∫0nx2dx−2∫0nx[x]dx+∫0n[x]2dxbut∫0nx[x]dx=∑k=0n−1∫kk+1kxdx=∑k=0n−1k((k+1)22−k22)=∑k=0n−1kk2+2k+1−k22=∑k=0n−1k(k+12)=∑k=0n−1k2+12∑k=0n−1k(n−1)(n−1+1)(2(n−1)+1)6+12(n−1)n2=n(n−1)(2n−1)6+n(n−1)4=n(n−1)2{2n−13+12}=n(n−1)2{4n−2+36}=n(n−1)(4n+1)12also∫0nx2dx=[x33]0n=n33∫0n[x]2dx=∑k=0n−1∫kk+1k2dx=∑k=0n−1k2=n(n−1)(2n−1)6⇒An=n33−2n(n−1)(4n+1)12+n(n−1)(4n+1)6An=n332)limn→+∞An=+∞ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-169169Next Next post: let-B-n-0-n-e-x-x-2-dx-1-calculate-B-n-2-find-lim-n-B-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.