Menu Close

let-A-n-0-n-x-x-2-dx-1-calculate-A-n-2-find-lim-n-A-n-




Question Number 38100 by maxmathsup by imad last updated on 21/Jun/18
let A_n = ∫_0 ^n (x−[x])^2 dx  1) calculate A_n   2) find lim_(n→+∞)  A_n
letAn=0n(x[x])2dx1)calculateAn2)findlimn+An
Commented by prof Abdo imad last updated on 22/Jun/18
A_n = ∫_0 ^n ( x^2  −2x[x] +[x]^2 )dx  = ∫_0 ^n  x^2 dx  −2 ∫_0 ^n  x[x]dx  +∫_0 ^n  [x]^2 dx but  ∫_0 ^n  x[x]dx=Σ_(k=0) ^(n−1)   ∫_k ^(k+1)  kx dx  =Σ_(k=0) ^(n−1)  k ( (((k+1)^2 )/2) −(k^2 /2))  =Σ_(k=0) ^(n−1)  k((k^2  +2k +1−k^2 )/2)  =Σ_(k=0) ^(n−1)  k( k +(1/2))=Σ_(k=0) ^(n−1)  k^2   +(1/2)Σ_(k=0) ^(n−1)  k  (((n−1)(n−1+1)(2(n−1)+1))/6) +(1/2)(((n−1)n)/2)    =((n(n−1)(2n−1))/6) +((n(n−1))/4)  =((n(n−1))/2){  ((2n−1)/3) +(1/2)}  =((n(n−1))/2){ ((4n−2 +3)/6)}  =((n(n−1)(4n+1))/(12)) also  ∫_0 ^n  x^2 dx =[(x^3 /3)]_0 ^n  = (n^3 /3)  ∫_0 ^n  [x]^2 dx =Σ_(k=0) ^(n−1)  ∫_k ^(k+1)  k^2  dx  =Σ_(k=0) ^(n−1)  k^2  =((n(n−1)(2n−1))/6) ⇒  A_n  = (n^3 /3)   −2 ((n(n−1)(4n+1))/(12))  +((n(n−1)(4n+1))/6)  A_n  =(n^3 /3)  2) lim_(n→+∞)  A_n =+∞
An=0n(x22x[x]+[x]2)dx=0nx2dx20nx[x]dx+0n[x]2dxbut0nx[x]dx=k=0n1kk+1kxdx=k=0n1k((k+1)22k22)=k=0n1kk2+2k+1k22=k=0n1k(k+12)=k=0n1k2+12k=0n1k(n1)(n1+1)(2(n1)+1)6+12(n1)n2=n(n1)(2n1)6+n(n1)4=n(n1)2{2n13+12}=n(n1)2{4n2+36}=n(n1)(4n+1)12also0nx2dx=[x33]0n=n330n[x]2dx=k=0n1kk+1k2dx=k=0n1k2=n(n1)(2n1)6An=n332n(n1)(4n+1)12+n(n1)(4n+1)6An=n332)limn+An=+

Leave a Reply

Your email address will not be published. Required fields are marked *