Question Number 44473 by abdo.msup.com last updated on 29/Sep/18
$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{sin}\left({n}\left[{t}\right]\right){e}^{−{t}} {dt} \\ $$$$\left.\mathrm{2}\right){calculate}\:{A}_{{n}} \:\:{and}\:{lim}_{{n}\rightarrow+\infty} {n}\:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right){study}\:{the}\:{convergence}\:{of}\:\sum_{{n}} \:{A}_{{n}} \\ $$
Commented by maxmathsup by imad last updated on 30/Sep/18
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{A}_{{n}} \:=\:\sum_{{k}=\mathrm{0}} ^{\infty} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:{sin}\left({nk}\right){e}^{−{t}} {dt} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \:{sin}\left({kn}\right)\:\int_{{k}} ^{{k}+\mathrm{1}} \:{e}^{−{t}} {dt}\:=\sum_{{k}=\mathrm{0}} ^{\infty} \:{sin}\left({kn}\right)\left[−{e}^{−{t}} \right]_{{k}} ^{{k}+\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \:\:{sin}\left({kn}\right)\left\{\:{e}^{−{k}} \:−{e}^{−\left({k}+\mathrm{1}\right)} \right\}=\sum_{{k}=\mathrm{0}} ^{\infty} \:{e}^{−{k}} \:{sin}\left({kn}\right)−\sum_{{k}=\mathrm{0}} ^{\infty} \:{e}^{−\left({k}+\mathrm{1}\right)} \:{sin}\left({kn}\right) \\ $$$${but}\:\sum_{{k}=\mathrm{0}} ^{\infty} \:{e}^{−{k}} \:{sin}\left({kn}\right)={Im}\left(\:\sum_{{k}=\mathrm{0}} ^{\infty} \:{e}^{−{k}+{ikn}} \right)\:\:{and} \\ $$$$\sum_{{k}=\mathrm{0}} ^{\infty} \:\:{e}^{−{k}\:+{ikn}} \:=\sum_{{k}=\mathrm{0}} ^{\infty} \:{e}^{\left(−\mathrm{1}+{in}\right){k}} =\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}+{in}} }\:=\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} \left({cos}\left({n}\right)+{isin}\left({n}\right)\right)} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} {cosn}−{ie}^{−\mathrm{1}} {sin}\left({n}\right)}\:=\frac{\mathrm{1}−{e}^{−\mathrm{1}} {cos}\left({n}\right)\:+{ie}^{−\mathrm{1}} {sin}\left({n}\right)}{\left(\mathrm{1}−{e}^{−\mathrm{1}} {cos}\left({n}\right)\right)^{\mathrm{2}} \:+{e}^{−\mathrm{2}} {sin}^{\mathrm{2}} {n}}\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{\infty} \:{e}^{−{k}} {sin}\left({kn}\right)\:=\frac{{e}^{−\mathrm{1}} {sin}\left({n}\right)}{\left(\mathrm{1}−{e}^{−\mathrm{1}} {cosn}\right)^{\mathrm{2}} \:+{e}^{−\mathrm{2}} {sin}^{\mathrm{2}} {n}}\:{also} \\ $$$$\sum_{{k}=\mathrm{0}} ^{\infty} \:{e}^{−\left({k}+\mathrm{1}\right)} {sin}\left({kn}\right)\:={e}^{−\mathrm{1}} \:\sum_{{k}=\mathrm{0}} ^{\infty} \:{e}^{−{k}} \:{sin}\left({kn}\right)\:=\frac{{e}^{−\mathrm{2}} {sin}\left({n}\right)}{\left(\mathrm{1}−{e}^{−\mathrm{1}} {cos}\left({n}\right)\right)^{\mathrm{2}} \:+{e}^{−\mathrm{2}} {sin}^{\mathrm{2}} {n}} \\ $$$${A}_{{n}} =\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)\:\frac{{e}^{−\mathrm{1}} {sin}\left({n}\right)}{\mathrm{1}−\mathrm{2}{e}^{−\mathrm{1}} {cosn}\:+{e}^{−\mathrm{2}} }\:=\frac{\left({e}^{−\mathrm{1}} \:−{d}^{−\mathrm{2}} \right){sin}\left({n}\right)}{\mathrm{1}−\mathrm{2}\:{e}^{−\mathrm{1}} {cos}\left({n}\right)\:+{e}^{−\mathrm{2}} } \\ $$$${A}_{{n}} =\frac{\left({e}−\mathrm{1}\right){sin}\left({n}\right)}{{e}^{\mathrm{2}} \:−\mathrm{2}{e}\:{cos}\left({n}\right)\:+\mathrm{1}}\:. \\ $$