Menu Close

let-A-n-0-sin-n-t-e-t-dt-2-calculate-A-n-and-lim-n-n-A-n-3-study-the-convergence-of-n-A-n-




Question Number 44473 by abdo.msup.com last updated on 29/Sep/18
let A_n =∫_0 ^∞  sin(n[t])e^(−t) dt  2)calculate A_n   and lim_(n→+∞) n A_n   3)study the convergence of Σ_n  A_n
letAn=0sin(n[t])etdt2)calculateAnandlimn+nAn3)studytheconvergenceofnAn
Commented by maxmathsup by imad last updated on 30/Sep/18
1) we have A_n  = Σ_(k=0) ^∞   ∫_k ^(k+1)  sin(nk)e^(−t) dt  =Σ_(k=0) ^∞  sin(kn) ∫_k ^(k+1)  e^(−t) dt =Σ_(k=0) ^∞  sin(kn)[−e^(−t) ]_k ^(k+1)   =Σ_(k=0) ^∞   sin(kn){ e^(−k)  −e^(−(k+1)) }=Σ_(k=0) ^∞  e^(−k)  sin(kn)−Σ_(k=0) ^∞  e^(−(k+1))  sin(kn)  but Σ_(k=0) ^∞  e^(−k)  sin(kn)=Im( Σ_(k=0) ^∞  e^(−k+ikn) )  and  Σ_(k=0) ^∞   e^(−k +ikn)  =Σ_(k=0) ^∞  e^((−1+in)k) =(1/(1−e^(−1+in) )) =(1/(1−e^(−1) (cos(n)+isin(n))))  = (1/(1−e^(−1) cosn−ie^(−1) sin(n))) =((1−e^(−1) cos(n) +ie^(−1) sin(n))/((1−e^(−1) cos(n))^2  +e^(−2) sin^2 n)) ⇒  Σ_(k=0) ^∞  e^(−k) sin(kn) =((e^(−1) sin(n))/((1−e^(−1) cosn)^2  +e^(−2) sin^2 n)) also  Σ_(k=0) ^∞  e^(−(k+1)) sin(kn) =e^(−1)  Σ_(k=0) ^∞  e^(−k)  sin(kn) =((e^(−2) sin(n))/((1−e^(−1) cos(n))^2  +e^(−2) sin^2 n))  A_n =(1−e^(−1) ) ((e^(−1) sin(n))/(1−2e^(−1) cosn +e^(−2) )) =(((e^(−1)  −d^(−2) )sin(n))/(1−2 e^(−1) cos(n) +e^(−2) ))  A_n =(((e−1)sin(n))/(e^2  −2e cos(n) +1)) .
1)wehaveAn=k=0kk+1sin(nk)etdt=k=0sin(kn)kk+1etdt=k=0sin(kn)[et]kk+1=k=0sin(kn){eke(k+1)}=k=0eksin(kn)k=0e(k+1)sin(kn)butk=0eksin(kn)=Im(k=0ek+ikn)andk=0ek+ikn=k=0e(1+in)k=11e1+in=11e1(cos(n)+isin(n))=11e1cosnie1sin(n)=1e1cos(n)+ie1sin(n)(1e1cos(n))2+e2sin2nk=0eksin(kn)=e1sin(n)(1e1cosn)2+e2sin2nalsok=0e(k+1)sin(kn)=e1k=0eksin(kn)=e2sin(n)(1e1cos(n))2+e2sin2nAn=(1e1)e1sin(n)12e1cosn+e2=(e1d2)sin(n)12e1cos(n)+e2An=(e1)sin(n)e22ecos(n)+1.

Leave a Reply

Your email address will not be published. Required fields are marked *