Menu Close

let-A-n-0-x-a-1-1-x-n-dx-with-n-integr-and-n-2-and-0-lt-a-lt-1-1-calculate-A-n-2-find-the-values-of-0-x-a-1-1-x-2-dx-and-0-x-a-1-1-x-3-dx-3-calculate-




Question Number 63662 by mathmax by abdo last updated on 06/Jul/19
 let A_n =∫_0 ^∞    (x^(a−1) /(1+x^n ))dx  with n integr and n≥2  and 0<a<1  1) calculate A_n   2) find the values of ∫_0 ^∞   (x^(a−1) /(1+x^2 ))dx and ∫_0 ^∞   (x^(a−1) /(1+x^3 ))dx  3)calculate ∫_0 ^∞      (dx/( (√x)(1+x^4 )))  and ∫_0 ^∞   (dx/((^3 (√x^2 ))(1+x^4 )))
letAn=0xa11+xndxwithnintegrandn2and0<a<11)calculateAn2)findthevaluesof0xa11+x2dxand0xa11+x3dx3)calculate0dxx(1+x4)and0dx(3x2)(1+x4)
Commented by mathmax by abdo last updated on 10/Jul/19
1) we have A_n =∫_0 ^∞  (x^(a−1) /(1+x^n ))dx  changement x^n =t give x=t^(1/n)  ⇒  A_n =∫_0 ^∞   (((t^(1/n) )^(a−1) )/(1+t)) (1/n)t^((1/n)−1) dt =(1/n)∫_0 ^∞   (t^(((a−1)/n)+(1/n)−1) /(1+t))dt  =(1/n)∫_0 ^∞   (t^((a/n)−1) /(1+t))dt =(1/n) (π/(sin(((πa)/n)))) by use of result ∫_0 ^∞  (t^(α−1) /(1+t))dt =(π/(sin(πα)))  2)∫_0 ^∞   (x^(a−1) /(1+x^2 ))dx =A_2 =(π/(2sin(((πa)/2))))  ∫_0 ^∞    (x^(a−1) /(1+x^3 )) dx =A_3 =(π/(3sin(((πa)/3))))  3)∫_0 ^∞   (dx/( (√x)(1+x^4 ))) =∫_0 ^∞  (x^(−(1/2)) /(1+x^4 )) dx =∫_0 ^∞   (x^((1/2)−1) /(1+x^4 ))  (a=(1/2)  and n=4)  = (π/(4sin((π/4)))) =(π/(4 ((√2)/2))) =(π/(2(√2))) .  ∫_0 ^∞      (dx/((^3 (√x^2 ))(1+x^4 ))) =∫_0 ^∞    (x^(−(2/3)) /(1+x^4 ))dx =∫_0 ^∞  (x^((1/3)−1) /(1+x^4 ))(→n=4 and a=(1/3))  =(π/(4sin((π/6)))) =(π/(4.(1/2))) =(π/2)
1)wehaveAn=0xa11+xndxchangementxn=tgivex=t1nAn=0(t1n)a11+t1nt1n1dt=1n0ta1n+1n11+tdt=1n0tan11+tdt=1nπsin(πan)byuseofresult0tα11+tdt=πsin(πα)2)0xa11+x2dx=A2=π2sin(πa2)0xa11+x3dx=A3=π3sin(πa3)3)0dxx(1+x4)=0x121+x4dx=0x1211+x4(a=12andn=4)=π4sin(π4)=π422=π22.0dx(3x2)(1+x4)=0x231+x4dx=0x1311+x4(n=4anda=13)=π4sin(π6)=π4.12=π2

Leave a Reply

Your email address will not be published. Required fields are marked *