Menu Close

let-A-n-0-x-sin-nx-x-2-n-2-2-dx-with-n-integr-natural-not-0-1-find-the-value-of-A-n-2-study-the-convergence-of-A-n-




Question Number 53114 by maxmathsup by imad last updated on 17/Jan/19
let A_n =∫_0 ^∞     ((x sin(nx))/((x^2  +n^2 )^2 ))dx  with n integr natural not 0  1) find the value of  A_n   2) study the convergence of Σ A_n
letAn=0xsin(nx)(x2+n2)2dxwithnintegrnaturalnot01)findthevalueofAn2)studytheconvergenceofΣAn
Commented by maxmathsup by imad last updated on 18/Jan/19
1) changement x=nt give A_n =∫_0 ^∞    ((nt sin(n^2 t))/(n^4 (t^2  +1)^2 )) ndt =(1/n^2 )∫_0 ^∞   ((tsin(n^2 t))/((t^2  +1)^2 ))dt ⇒  2n^2  A_n =∫_(−∞) ^(+∞)    ((tsin(n^2 t))/((t^2  +1)^2 ))dt =Im( ∫_(−∞) ^(+∞)    ((t e^(in^2 t) )/((t^2  +1)^2 ))dt) let consider the complex  function ϕ(z) =((z e^(in^2 z) )/((z^2 +1)^2 )) ⇒ϕ(z)=((z e^(in^2 z) )/((z−i)^2 (z+i)^2 )) so the poles of ϕ are i and −i  (doubles) residus theorem give ∫_(−∞) ^(+∞) ϕ(z)dz =2iπRes(ϕ,i)  Res(ϕ,i) =lim_(z→i) (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i) { ((z e^(in^2 z) )/((z+i)^2 ))}^((1)) =lim_(z→i)   (((e^(in^2 z)  +in^2 z e^(in^2 z) )(z+i)^2 −2(z+i)z e^(in^2 z) )/((z+i)^4 ))  =lim_(z→i)    ((((1+in^2 z)(z+i)−2z)e^(in^2 z) )/((z+i)^3 )) =((((1−n^2 )(2i)−2i)e^(−n^2 ) )/((2i)^3 ))  =((−2in^2  e^(−n^2 ) )/(−8i)) =(n^2 /4) e^(−n^2  )  ⇒ ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ (n^2 /4) e^(−n^2 ) =((iπn^2 )/2) e^(−n^2 )   2n^2  A_n =((πn^2 )/2) e^(−n^2 )  ⇒ A_n =(π/4) e^(−n^2 )  .  we have Σ_(n=0) ^∞  A_n =(π/4) Σ_(n=0) ^∞  e^(−n^2 )    but  n^2 ≥n ⇒−n^2 ≤−n ⇒e^(−n^2 ) ≤e^(−n)  ⇒  Σ_(n=0) ^∞  A_n ≤(π/4) Σ_(n=0) ^∞  ((1/e))^n  =(π/4)(1/(1−(1/e))) =(π/4) (e/(e−1)) ⇒  0< Σ_(n=0) ^∞  A_n  ≤((πe)/(4(e−1))) .
1)changementx=ntgiveAn=0ntsin(n2t)n4(t2+1)2ndt=1n20tsin(n2t)(t2+1)2dt2n2An=+tsin(n2t)(t2+1)2dt=Im(+tein2t(t2+1)2dt)letconsiderthecomplexfunctionφ(z)=zein2z(z2+1)2φ(z)=zein2z(zi)2(z+i)2sothepolesofφareiandi(doubles)residustheoremgive+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{zein2z(z+i)2}(1)=limzi(ein2z+in2zein2z)(z+i)22(z+i)zein2z(z+i)4=limzi((1+in2z)(z+i)2z)ein2z(z+i)3=((1n2)(2i)2i)en2(2i)3=2in2en28i=n24en2+φ(z)dz=2iπn24en2=iπn22en22n2An=πn22en2An=π4en2.wehaven=0An=π4n=0en2butn2nn2nen2enn=0Anπ4n=0(1e)n=π4111e=π4ee10<n=0Anπe4(e1).

Leave a Reply

Your email address will not be published. Required fields are marked *