let-A-n-0-x-sin-nx-x-2-n-2-2-dx-with-n-integr-natural-not-0-1-find-the-value-of-A-n-2-study-the-convergence-of-A-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 53114 by maxmathsup by imad last updated on 17/Jan/19 letAn=∫0∞xsin(nx)(x2+n2)2dxwithnintegrnaturalnot01)findthevalueofAn2)studytheconvergenceofΣAn Commented by maxmathsup by imad last updated on 18/Jan/19 1)changementx=ntgiveAn=∫0∞ntsin(n2t)n4(t2+1)2ndt=1n2∫0∞tsin(n2t)(t2+1)2dt⇒2n2An=∫−∞+∞tsin(n2t)(t2+1)2dt=Im(∫−∞+∞tein2t(t2+1)2dt)letconsiderthecomplexfunctionφ(z)=zein2z(z2+1)2⇒φ(z)=zein2z(z−i)2(z+i)2sothepolesofφareiand−i(doubles)residustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{zein2z(z+i)2}(1)=limz→i(ein2z+in2zein2z)(z+i)2−2(z+i)zein2z(z+i)4=limz→i((1+in2z)(z+i)−2z)ein2z(z+i)3=((1−n2)(2i)−2i)e−n2(2i)3=−2in2e−n2−8i=n24e−n2⇒∫−∞+∞φ(z)dz=2iπn24e−n2=iπn22e−n22n2An=πn22e−n2⇒An=π4e−n2.wehave∑n=0∞An=π4∑n=0∞e−n2butn2⩾n⇒−n2⩽−n⇒e−n2⩽e−n⇒∑n=0∞An⩽π4∑n=0∞(1e)n=π411−1e=π4ee−1⇒0<∑n=0∞An⩽πe4(e−1). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-I-t-1-t-2-t-1-2-dt-find-value-of-I-Next Next post: Question-118651 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.