Menu Close

let-a-n-1-2-a-n-a-0-2-find-lim-n-a-n-1-




Question Number 93892 by frc2crc last updated on 15/May/20
let  a_(n+1) =(√(2+(√a_n )))      a_0 =(√2)  find lim_(n→∞)  a_(n+1)
letan+1=2+ana0=2findlimnan+1
Commented by Tony Lin last updated on 16/May/20
let f(x)=(√(2+(√x)))  f ′(x)=(1/(4(√x)∙(√(2+(√x)))))>0  ∴f(x) is an increasing function  similarily  ⟨a_n ⟩ is an increasing series  let a_k ≤1.84  a_(k+1) ≤(√(2+(√(1.84))))≤1.84  ⟨a_n ⟩ has upper bound  ∴ lim_(n→∞) a_(n+1)  exists and equals lim_(n→∞) a_n   let lim_(n→∞) a_(n+1) =x  x=(√(2+(√x)))  x^2 =2+(√x)  (x^2 −2)^2 =x  x^4 −4x^2 −x+4=0  (x−1)(x^3 +x^2 −3x−4)=0  1<a_0 =(√2)(false)  x^3 +x^2 −3x−4=0  let t=x+(1/3) ,x=t−(1/3)  t^3 −((10)/3)t−((79)/(27))=0  let t=u+v  (u+v)^3 −((10)/3)(u+v)−((79)/(27))=0  u^3 +v^3 −((79)/(27))=(((10)/3)−3uv)(u+v)  suppose uv=((10)/9)  →u^3 +v^3 =((79)/(27))   { ((u^3 +v^3 =((79)/(27))=−(b/a))),((u^3 v^3 =((1000)/(729))=(c/a))) :}  ⇒729y^2 −2133y+1000=0  y=−((79)/(54))±((√((83)/3))/6) (one is u^3 ,another is v^3 )  t=_3 (√(−((79)/(54))+((√((83)/3))/6)))+_3 (√(−((79)/(54))−((√((83)/3))/6)))  (real root one)  x=t−(1/3)  =_3 (√(−((79)/(54))+((√((83)/3))/6)))+_3 (√(−((79)/(54))−((√((83)/3))/6)))−(1/3)  ≈1.8312  ⇒lim_(n→∞) a_(n+1) =x≈1.8312
letf(x)=2+xf(x)=14x2+x>0f(x)isanincreasingfunctionsimilarilyanisanincreasingseriesletak1.84ak+12+1.841.84anhasupperboundlimnan+1existsandequalslimnanletlimnan+1=xx=2+xx2=2+x(x22)2=xx44x2x+4=0(x1)(x3+x23x4)=01<a0=2(false)x3+x23x4=0lett=x+13,x=t13t3103t7927=0lett=u+v(u+v)3103(u+v)7927=0u3+v37927=(1033uv)(u+v)supposeuv=109u3+v3=7927{u3+v3=7927=bau3v3=1000729=ca729y22133y+1000=0y=7954±8336(oneisu3,anotherisv3)t=37954+8336+379548336(realrootone)x=t13=37954+8336+379548336131.8312limnan+1=x1.8312
Commented by Tony Lin last updated on 16/May/20
The only use of a_0 =(√2)    is to verify that lim_(n→∞) a_(n+1)  should be  bigger than a_0 =(√2) because  ⟨a_n ⟩ is an increasing series  and 1.8312>(√2)  which is the upper bound of the series
Theonlyuseofa0=2istoverifythatlimnan+1shouldbebiggerthana0=2becauseanisanincreasingseriesand1.8312>2whichistheupperboundoftheseries
Commented by frc2crc last updated on 16/May/20
what is 1.8312 it terms of (√2)?
whatis1.8312ittermsof2?

Leave a Reply

Your email address will not be published. Required fields are marked *