Question Number 39120 by math khazana by abdo last updated on 02/Jul/18
![let A_n = ∫_1 ^n (([(√(1+x^2 ))] −[x])/x^2 ) dx (n integr ≥1) 1) calculate A_n 2) find lim_(n→+∞) A_n](https://www.tinkutara.com/question/Q39120.png)
Commented by math khazana by abdo last updated on 04/Jul/18
![we have A_n = Σ_(k=1) ^n ∫_k ^(k+1) (([(√(1+x^2 ))]−k)/x^2 )dx but k≤x<k+1 ⇒ k^2 ≤x^2 <(k+1)^2 ⇒ k^2 +1 ≤1+x^2 ≤1+ (k+1)^2 ⇒(√(1+k^2 )) ≤(√(1+x^2 )) <(√(1+(k+1)^2 )) ⇒ (√(1+k^2 )) ≤(√(1+x^2 <)) (√(k^2 +2k+2))≤k+2 ⇒ k ≤ (√(1+x^2 <)) k+2 ⇒[(√(1+x^2 ))]=k or k+1 A_n =Σ_(k=1) ^n ∫_k ^(k+1) ((k+1−k)/x^2 )dx=Σ_(k=1) ^n ∫_k ^(k+1) (dx/x^2 ) =Σ_(k=1) ^n [−(1/x)]_k ^(k+1) = Σ_(k=1) ^n ( (1/k) −(1/(k+1))) =1−(1/2) +(1/2) −(1/3) +....(1/n) −(1/(n+1)) =1−(1/(n+1)) ⇒ A_n = (n/(n+1)) 2) its clear that lim_(n→+∞) A_n =1 .](https://www.tinkutara.com/question/Q39268.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
![x (√(1+x^2 )) [(√(1+x^2 )) ] [x_ ] [(√(1+x^2 )) ]−[x] 1 (√2) =1.41 1 1 0 1.5 (√(3.25)) =1.8 1 1 0 2 (√5) =2.23 2 2 0 2.5 (√(7.25))=2.69 2 2 0 3 (√(10)) =3.16 3 3 0 4 (√(17)) = 4.12 4 4 0 k (√(1+k^2 )) =k+△k k k 0 when 1 >△k>0 wait](https://www.tinkutara.com/question/Q39179.png)
Commented by abdo.msup.com last updated on 03/Jul/18

Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18

Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
![f(x)=[(√(1+x^2 )) ]−[x] from graph it is clear that f(x)=[(√(1+x^2 )) ]−[x] is zero when n>x≥1 so the value of intregal is zero...pls check](https://www.tinkutara.com/question/Q39196.png)
Commented by math khazana by abdo last updated on 03/Jul/18
