Menu Close

let-A-n-1-n-1-x-2-x-x-2-dx-n-integr-1-1-calculate-A-n-2-find-lim-n-A-n-




Question Number 39120 by math khazana by abdo last updated on 02/Jul/18
let A_n = ∫_1 ^n  (([(√(1+x^2 ))] −[x])/x^2 ) dx  (n integr ≥1)  1) calculate A_n   2) find lim_(n→+∞)  A_n
letAn=1n[1+x2][x]x2dx(nintegr1)1)calculateAn2)findlimn+An
Commented by math khazana by abdo last updated on 04/Jul/18
we have A_n = Σ_(k=1) ^n  ∫_k ^(k+1)    (([(√(1+x^2 ))]−k)/x^2 )dx  but  k≤x<k+1 ⇒ k^2 ≤x^2 <(k+1)^2  ⇒  k^2  +1 ≤1+x^2 ≤1+ (k+1)^2  ⇒(√(1+k^2 )) ≤(√(1+x^2 )) <(√(1+(k+1)^2 ))  ⇒ (√(1+k^2 )) ≤(√(1+x^2 <)) (√(k^2  +2k+2))≤k+2 ⇒  k ≤ (√(1+x^2 <)) k+2  ⇒[(√(1+x^2 ))]=k or k+1   A_n =Σ_(k=1) ^n  ∫_k ^(k+1)  ((k+1−k)/x^2 )dx=Σ_(k=1) ^n  ∫_k ^(k+1)  (dx/x^2 )  =Σ_(k=1) ^n  [−(1/x)]_k ^(k+1)  = Σ_(k=1) ^n ( (1/k) −(1/(k+1)))  =1−(1/2) +(1/2) −(1/3) +....(1/n) −(1/(n+1)) =1−(1/(n+1)) ⇒  A_n = (n/(n+1))  2) its clear that  lim_(n→+∞)   A_n =1 .
wehaveAn=k=1nkk+1[1+x2]kx2dxbutkx<k+1k2x2<(k+1)2k2+11+x21+(k+1)21+k21+x2<1+(k+1)21+k21+x2<k2+2k+2k+2k1+x2<k+2[1+x2]=kork+1An=k=1nkk+1k+1kx2dx=k=1nkk+1dxx2=k=1n[1x]kk+1=k=1n(1k1k+1)=112+1213+.1n1n+1=11n+1An=nn+12)itsclearthatlimn+An=1.
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
x      (√(1+x^2 ))      [(√(1+x^2 )) ]    [x_ ]    [(√(1+x^2 )) ]−[x]  1      (√2) =1.41               1        1                  0  1.5  (√(3.25)) =1.8     1      1               0  2        (√5)   =2.23            2        2                   0  2.5   (√(7.25))=2.69   2      2                0  3      (√(10)) =3.16         3      3                     0  4        (√(17)) = 4.12       4      4                   0     k      (√(1+k^2 ))  =k+△k   k     k            0  when  1 >△k>0   wait
x1+x2[1+x2][x][1+x2][x]12=1.411101.53.25=1.811025=2.232202.57.25=2.69220310=3.16330417=4.12440k1+k2=k+kkk0when1>k>0wait
Commented by abdo.msup.com last updated on 03/Jul/18
but you know that the train dont wait...
butyouknowthatthetraindontwait
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
f(x)=[(√(1+x^2 )) ]−[x]  from graph it is clear that f(x)=[(√(1+x^2 )) ]−[x]  is zero when n>x≥1  so the value of intregal  is zero...pls check
f(x)=[1+x2][x]fromgraphitisclearthatf(x)=[1+x2][x]iszerowhenn>x1sothevalueofintregaliszeroplscheck
Commented by math khazana by abdo last updated on 03/Jul/18
miracylous graph for this function it s like  a rail ways...
miracylousgraphforthisfunctionitslikearailways

Leave a Reply

Your email address will not be published. Required fields are marked *