Menu Close

let-A-n-1-n-n-1-1-x-2-arctanx-dx-1-calculate-A-n-2-find-lim-n-A-n-




Question Number 35049 by math khazana by abdo last updated on 14/May/18
let A_n  = ∫_(1/n) ^n  (1+(1/x^2 ))arctanx dx  1) calculate A_n   2) find lim_(n→+∞)  A_n
letAn=1nn(1+1x2)arctanxdx1)calculateAn2)findlimn+An
Commented by abdo mathsup 649 cc last updated on 16/May/18
1) let integrate by parts u^′  =1+(1/x^2 )  and  v=arctanx  A_n  = [(1−(1/x))arctanx]_(1/n) ^n   −∫_(1/n) ^n   (1−(1/x)) (dx/(1+x^2 ))  =(1−(1/n))arctan(n) −(1−n)arctan((1/n))  − ∫_(1/n) ^n  (dx/(1+x^2 ))  + ∫_(1/n) ^n    (dx/(x(1+x^2 )))  but  ∫_(1/n) ^n    (dx/(1+x^2 )) = arctan(n) −arctan((1/n))  ∫_(1/n) ^n (1/(x(1+x^2 ))) dx= ∫_(1/n) ^n ((1/x) −(x/(1+x^2 )))dx  =ln(n) −ln((1/n))  −(1/2)[ln(1+x^2 )]_(1/n) ^n   = 2ln(n) −(1/2){ ln(1+n^2 ) −ln(1+(1/n^2 ))}⇒  A_n  = (1−(1/n))arctan(n)−(1−n)arctan((1/n))  −arctan(n) +arctan((1/n))  +2ln(n)−(1/2)(2ln(n))  A_n =−((arctan(n))/n) +n arctan((1/n)) +(π/2) −2arctan(n)  +ln(n)  2) we have  lim_(n→+∞) ( −((arctan(n))/n) +n arctan((1/n)) +(π/2) −2arctsn(n))  =0 +1 −(π/2) −π   but lim_(n→+∞)  ln(n) =+∞ ⇒  lim_(n→+∞)   A_n = +∞.
1)letintegratebypartsu=1+1x2andv=arctanxAn=[(11x)arctanx]1nn1nn(11x)dx1+x2=(11n)arctan(n)(1n)arctan(1n)1nndx1+x2+1nndxx(1+x2)but1nndx1+x2=arctan(n)arctan(1n)1nn1x(1+x2)dx=1nn(1xx1+x2)dx=ln(n)ln(1n)12[ln(1+x2)]1nn=2ln(n)12{ln(1+n2)ln(1+1n2)}An=(11n)arctan(n)(1n)arctan(1n)arctan(n)+arctan(1n)+2ln(n)12(2ln(n))An=arctan(n)n+narctan(1n)+π22arctan(n)+ln(n)2)wehavelimn+(arctan(n)n+narctan(1n)+π22arctsn(n))=0+1π2πbutlimn+ln(n)=+limn+An=+.
Answered by MJS last updated on 15/May/18
∫(1+(1/x^2 ))arctan(x)dx=  =∫arctan(x)dx+∫((arctan(x))/x^2 )dx=              ∫arctan(x)dx=                       [((∫u′v=uv−∫uv′)),((u′=1 ⇒ u=x)),((v=arctan(x) ⇒ v′=(1/(x^2 +1)))) ]            =xarctan(x)−∫(x/(x^2 +1))dx=                       [((t=x^2 +1 → dx=(dt/(2x)))) ]            =xarctan(x)−(1/2)∫(1/t)dt=            =xarctan(x)−((ln(t))/2)=            =xarctan(x)−((ln(x^2 +1))/2)              ∫((arctan(x))/x^2 )dx=                       [((∫u′v=uv−∫uv′)),((u′=(1/x^2 ) ⇒ u=−(1/x))),((v=arctan(x) ⇒ v′=(1/(x^2 +1)))) ]            =−((arctan(x))/x)+∫(1/(x(x^2 +1)))dx=            =−((arctan(x))/x)+∫((1/x)−(x^2 /(x^2 +1)))dx=                       [((same as above)) ]            =−((arctan(x))/x)+ln(x)−((ln(x^2 +1))/2)    =xarctan(x)−((ln(x^2 +1))/2)−((arctan(x))/x)+ln(x)−((ln(x^2 +1))/2)=  =(((x^2 −1)/x))arctan(x)+ln((x/(x^2 +1)))+C  ∫_(1/n) ^n (1+(1/x^2 ))arctan(x)dx=  =(((n^2 −1)/n))arctan(n)+ln((n/(n^2 +1)))−(((((1/n^2 )−1)/(1/n)))arctan((1/n))+ln(((1/n)/((1/n^2 )+1))))=  =(((n^2 −1)/n))arctan(n)+ln((n/(n^2 +1)))−((((1−n^2 )/n))((π/2)−arctan(n))+ln((n/(n^2 +1))))=  =((π(n^2 −1))/(2n))    lim_(n→∞) ((π(n^2 −1))/(2n))=(π/2)lim_(n→∞) (n−(1/n))=∞
(1+1x2)arctan(x)dx==arctan(x)dx+arctan(x)x2dx=arctan(x)dx=[uv=uvuvu=1u=xv=arctan(x)v=1x2+1]=xarctan(x)xx2+1dx=[t=x2+1dx=dt2x]=xarctan(x)121tdt==xarctan(x)ln(t)2==xarctan(x)ln(x2+1)2arctan(x)x2dx=[uv=uvuvu=1x2u=1xv=arctan(x)v=1x2+1]=arctan(x)x+1x(x2+1)dx==arctan(x)x+(1xx2x2+1)dx=[sameasabove]=arctan(x)x+ln(x)ln(x2+1)2=xarctan(x)ln(x2+1)2arctan(x)x+ln(x)ln(x2+1)2==(x21x)arctan(x)+ln(xx2+1)+Cn1n(1+1x2)arctan(x)dx==(n21n)arctan(n)+ln(nn2+1)((1n211n)arctan(1n)+ln(1n1n2+1))==(n21n)arctan(n)+ln(nn2+1)((1n2n)(π2arctan(n))+ln(nn2+1))==π(n21)2nlimnπ(n21)2n=π2limn(n1n)=

Leave a Reply

Your email address will not be published. Required fields are marked *