let-A-n-1-n-n-1-1-x-2-arctanx-dx-1-calculate-A-n-2-find-lim-n-A-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 35049 by math khazana by abdo last updated on 14/May/18 letAn=∫1nn(1+1x2)arctanxdx1)calculateAn2)findlimn→+∞An Commented by abdo mathsup 649 cc last updated on 16/May/18 1)letintegratebypartsu′=1+1x2andv=arctanxAn=[(1−1x)arctanx]1nn−∫1nn(1−1x)dx1+x2=(1−1n)arctan(n)−(1−n)arctan(1n)−∫1nndx1+x2+∫1nndxx(1+x2)but∫1nndx1+x2=arctan(n)−arctan(1n)∫1nn1x(1+x2)dx=∫1nn(1x−x1+x2)dx=ln(n)−ln(1n)−12[ln(1+x2)]1nn=2ln(n)−12{ln(1+n2)−ln(1+1n2)}⇒An=(1−1n)arctan(n)−(1−n)arctan(1n)−arctan(n)+arctan(1n)+2ln(n)−12(2ln(n))An=−arctan(n)n+narctan(1n)+π2−2arctan(n)+ln(n)2)wehavelimn→+∞(−arctan(n)n+narctan(1n)+π2−2arctsn(n))=0+1−π2−πbutlimn→+∞ln(n)=+∞⇒limn→+∞An=+∞. Answered by MJS last updated on 15/May/18 ∫(1+1x2)arctan(x)dx==∫arctan(x)dx+∫arctan(x)x2dx=∫arctan(x)dx=[∫u′v=uv−∫uv′u′=1⇒u=xv=arctan(x)⇒v′=1x2+1]=xarctan(x)−∫xx2+1dx=[t=x2+1→dx=dt2x]=xarctan(x)−12∫1tdt==xarctan(x)−ln(t)2==xarctan(x)−ln(x2+1)2∫arctan(x)x2dx=[∫u′v=uv−∫uv′u′=1x2⇒u=−1xv=arctan(x)⇒v′=1x2+1]=−arctan(x)x+∫1x(x2+1)dx==−arctan(x)x+∫(1x−x2x2+1)dx=[sameasabove]=−arctan(x)x+ln(x)−ln(x2+1)2=xarctan(x)−ln(x2+1)2−arctan(x)x+ln(x)−ln(x2+1)2==(x2−1x)arctan(x)+ln(xx2+1)+C∫n1n(1+1x2)arctan(x)dx==(n2−1n)arctan(n)+ln(nn2+1)−((1n2−11n)arctan(1n)+ln(1n1n2+1))==(n2−1n)arctan(n)+ln(nn2+1)−((1−n2n)(π2−arctan(n))+ln(nn2+1))==π(n2−1)2nlimn→∞π(n2−1)2n=π2limn→∞(n−1n)=∞ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-dx-cos-sinx-Next Next post: i-i-i-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.