Menu Close

Let-a-n-10-1-2-n-a-n-is-a-geometrical-sequence-S-n-a-0-a-1-a-n-1-S-n-10-1-1-2-n-1-1-2-Proove-that-S-n-10-2-2-1-




Question Number 58364 by Hassen_Timol last updated on 22/Apr/19
Let a_n = 10 × ((1/( (√2))))^n       a_n  is a geometrical sequence    S_n  = a_0  + a_1  + ... + a_(n−1)        S_n = 10 × ((1 − ((1/( (√2))))^n )/(1 − ((1/( (√2))))))  Proove that :    S_n  = ((10(√2))/( (√2) − 1)) × (1−((1/( (√2))))^n )
Letan=10×(12)nanisageometricalsequenceSn=a0+a1++an1Sn=10×1(12)n1(12)Proovethat:Sn=10221×(1(12)n)
Answered by Kunal12588 last updated on 22/Apr/19
S_n =10×((1−((1/( (√2))))^n )/(1−(1/( (√2))))) [Given]  =10(√2)×((1−((1/( (√2))))^n )/( (√2)−1))  =((10(√2))/( (√2)−1))(1−((1/( (√2))))^n )  well What was the question?
Sn=10×1(12)n112[Given]=102×1(12)n21=10221(1(12)n)wellWhatwasthequestion?
Commented by Hassen_Timol last updated on 22/Apr/19
Thank you sir
Thankyousir
Answered by tanmay last updated on 22/Apr/19
a_n =10×((1/( (√2))))^n →a_1 =10((1/( (√2))))^1   a_2 =10×((1/( (√2))))^2   formula S_n =((a(1−r^n ))/(1−r))  r=(a_2 /a_1 )=((10×((1/( (√2))))^2 )/(10×((1/( (√2))))^1 ))=(1/( (√2)))  S_n =((a(1−r^n ))/(1−r))  =((10×(1/( (√2))){(1−((1/( (√2))))^n })/(1−(1/( (√2)))))  =((10×{(1−((1/( (√2))))^n })/( (√2) −1))
an=10×(12)na1=10(12)1a2=10×(12)2formulaSn=a(1rn)1rr=a2a1=10×(12)210×(12)1=12Sn=a(1rn)1r=10×12{(1(12)n}112=10×{(1(12)n}21
Commented by Hassen_Timol last updated on 22/Apr/19
Thank you Sir
ThankyouSir

Leave a Reply

Your email address will not be published. Required fields are marked *