Menu Close

Let-a-n-be-a-sequence-such-that-a-1-2-a-n-1-3a-n-4-2a-n-3-n-1-find-a-n-




Question Number 98280 by I want to learn more last updated on 12/Jun/20
Let  {a_n }  be  a sequence such that   a_1  =  2,  a_(n  +  1)   =  ((3a_n  +  4)/(2a_n   +  3)),     n ≥ 1,     find    a_n
Let{an}beasequencesuchthata1=2,an+1=3an+42an+3,n1,findan
Answered by mr W last updated on 12/Jun/20
a_(n+1) =((3a_n +4)/(2a_n +3))  a_(n+1) +A=((3a_n +4)/(2a_n +3))+A=(((3+2A)a_n +(4+3A))/(2a_n +3))  a_(n+1) +B=((3a_n +4)/(2a_n +3))+B=(((3+2B)a_n +(4+3B))/(2a_n +3))  ((a_(n+1) +A)/(a_(n+1) +B))=((3+2A)/(3+2B))×((a_n +((4+3A)/(3+2A)))/(a_n +((4+3B)/(3+2B))))  set A=((4+3A)/(3+2A))  ⇒A^2 =2  ⇒A=(√2)  ⇒B=−(√2)  ((3+2A)/(3+2B))=((3+2(√2))/(3−2(√2)))=(3+2(√2))^2   with b_n =((a_n +(√2))/(a_n −(√2)))  b_(n+1) =(3+2(√2))^2 b_n  ← G.P.  ⇒b_n =b_1 (3+2(√2))^(2(n−1))   b_1 =((2+(√2))/(2−(√2)))=3+2(√2)  ⇒b_n =(3+2(√2))^(2n−1)   a_n =(((√2)(b_n +1))/(b_n −1))=(√2)(1+(2/(b_n −1)))  ⇒a_n =(√2)[1+(2/((3+2(√2))^(2n−1) −1))]  we get:  a_1 =2  a_2 =((10)/7)  a_3 =((58)/(41))  a_4 =((338)/(239))
an+1=3an+42an+3an+1+A=3an+42an+3+A=(3+2A)an+(4+3A)2an+3an+1+B=3an+42an+3+B=(3+2B)an+(4+3B)2an+3an+1+Aan+1+B=3+2A3+2B×an+4+3A3+2Aan+4+3B3+2BsetA=4+3A3+2AA2=2A=2B=23+2A3+2B=3+22322=(3+22)2withbn=an+2an2bn+1=(3+22)2bnG.P.bn=b1(3+22)2(n1)b1=2+222=3+22bn=(3+22)2n1an=2(bn+1)bn1=2(1+2bn1)an=2[1+2(3+22)2n11]weget:a1=2a2=107a3=5841a4=338239
Commented by I want to learn more last updated on 12/Jun/20
Great sir,  thanks
Greatsir,thanks

Leave a Reply

Your email address will not be published. Required fields are marked *