Question Number 35688 by prof Abdo imad last updated on 22/May/18

Commented by prof Abdo imad last updated on 22/May/18
![we have A_n = Σ_(k=1) ^n (1/(n( (k/n) +1)))ln(1+(k/n)) = (1/n) Σ_(k=1) ^n ((ln(1+(k/n)))/(1+(k/n))) so A_n is a Rieman sum lim_(n→+∞) A_n = ∫_0 ^1 ((ln(1+x))/(1+x))dx =I by parts I =[ ln^2 (1+x)]_0 ^1 −∫_0 ^1 ((ln(1+x))/(1+x))dx = {ln(2)}^2 −I ⇒ 2I = {ln(2)}^2 ⇒ I =(({ln(2)}^2 )/2) =lim_(n→+∞) A_n ⇒](https://www.tinkutara.com/question/Q35719.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 22/May/18

Commented by prof Abdo imad last updated on 22/May/18
