Menu Close

let-A-n-k-1-n-1-k-n-ln-1-k-n-calculate-lim-n-A-n-




Question Number 35688 by prof Abdo imad last updated on 22/May/18
let A_n  =Σ_(k=1) ^n    (1/(k+n))ln(1+(k/n))  calculate lim_(n→+∞) A_n
letAn=k=1n1k+nln(1+kn)calculatelimn+An
Commented by prof Abdo imad last updated on 22/May/18
we have A_n   = Σ_(k=1) ^n   (1/(n( (k/n) +1)))ln(1+(k/n))  = (1/n) Σ_(k=1) ^n     ((ln(1+(k/n)))/(1+(k/n))) so A_n   is a Rieman sum  lim_(n→+∞)  A_n  = ∫_0 ^1   ((ln(1+x))/(1+x))dx =I   by parts  I  =[ ln^2 (1+x)]_0 ^1  −∫_0 ^1    ((ln(1+x))/(1+x))dx  = {ln(2)}^2  −I ⇒ 2I = {ln(2)}^2  ⇒  I =(({ln(2)}^2 )/2) =lim_(n→+∞)  A_n   ⇒
wehaveAn=k=1n1n(kn+1)ln(1+kn)=1nk=1nln(1+kn)1+knsoAnisaRiemansumlimn+An=01ln(1+x)1+xdx=IbypartsI=[ln2(1+x)]0101ln(1+x)1+xdx={ln(2)}2I2I={ln(2)}2I={ln(2)}22=limn+An
Answered by tanmay.chaudhury50@gmail.com last updated on 22/May/18
=((lim)/(n→∞))×(1/n)×(1/(1+((k/n))))×ln(1+(k/n))  =∫_0 ^1 ((ln(1+x))/(1+x))×dx  t=ln(1+x)   dt=(dx/(1+x))   ∫_0 ^(ln2) tdt  =∣(t^2 /2)∣_0 ^(ln2)   =(((ln2)^2 )/2)
=limn×1n×11+(kn)×ln(1+kn)=01ln(1+x)1+x×dxt=ln(1+x)dt=dx1+x0ln2tdt=∣t220ln2=(ln2)22
Commented by prof Abdo imad last updated on 22/May/18
sir Tanmays your answer is correct thanks...
sirTanmaysyouransweriscorrectthanks

Leave a Reply

Your email address will not be published. Required fields are marked *