Menu Close

let-a-n-k-2-n-cos-pi-2-k-prove-that-a-n-ks-decreasing-2-let-b-n-a-n-cos-pi-2-n-find-lim-n-a-n-b-n-




Question Number 30488 by abdo imad last updated on 22/Feb/18
let   a_n = Π_(k=2) ^n  cos((π/2^k )) .prove that (a_n ) ks decreasing.  2) let b_n =a_n cos((π/2^n ))  find lim_(n→∞) (a_n  −b_n ).
$${let}\:\:\:{a}_{{n}} =\:\prod_{{k}=\mathrm{2}} ^{{n}} \:{cos}\left(\frac{\pi}{\mathrm{2}^{{k}} }\right)\:.{prove}\:{that}\:\left({a}_{{n}} \right)\:{ks}\:{decreasing}. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{b}_{{n}} ={a}_{{n}} {cos}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)\:\:{find}\:{lim}_{{n}\rightarrow\infty} \left({a}_{{n}} \:−{b}_{{n}} \right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *