Menu Close

let-A-n-w-n-e-x-2-y-2-x-2-y-2-dxdy-with-w-n-1-n-n-1-n-n-1-calculate-A-n-interms-of-n-2-find-lim-n-A-n-




Question Number 57103 by turbo msup by abdo last updated on 30/Mar/19
let A_n =∫∫_w_n   e^(−x^2 −y^2 )  (√(x^2  +y^2 ))dxdy  with w_n =[(1/n),n]×[(1/n),n]  1) calculate A_n interms of n  2) find lim_(n→+∞)  A_n
letAn=wnex2y2x2+y2dxdywithwn=[1n,n]×[1n,n]1)calculateAnintermsofn2)findlimn+An
Commented by 121194 last updated on 30/Mar/19
x=rcos θ  y=rsin θ  J(r,θ)=r  ∫∫_w_n ^∗  e^(−r^2 ) r∙rdrdθ=∫∫_w_n ^∗  e^(−r^2 ) r^2 drdθ
x=rcosθy=rsinθJ(r,θ)=rwner2rrdrdθ=wner2r2drdθ
Commented by maxmathsup by imad last updated on 30/Mar/19
let use the changement  x=rcosθ and y=rsinθ  we have  (1/n)≤x≤n and (1/n) ≤y≤n ⇒(2/n^2 ) ≤x^2  +y^2  ≤2n^2  ⇒(2/n^2 ) ≤r^2  ≤2n^2  ⇒((√2)/n) ≤r≤n(√2)  also we have x≥0 and y ≥0 ⇒ 0≤θ ≤(π/2) ⇒  A_n =∫∫_(((√2)/n)≤r≤n(√2)and 0≤θ≤(π/2))    e^(−r^2 )  r rdrdθ =∫∫_(w^′ n) r^2  e^(−r^2 ) drdθ  =(∫_((√2)/n) ^(n(√2))   r^2  e^(−r^2 ) dr)∫_0 ^(π/2)  dθ =(π/2) ∫_((√2)/n) ^(n(√2))  r^2  e^(−r^2 ) dr   by parts u=r and v^′  =r e^(−r^2 )   ∫_((√2)/n) ^(n(√2))  r(r e^(−r^2 ) )dr =[−(1/2) r e^(−r^2 ) ]_((√2)/n) ^(n(√2)) +(1/2) ∫_((√2)/n) ^(n(√2))  e^(−r^2 ) dr  =(1/2){((√2)/n) e^(−(2/n^2 ))    −n(√2)e^(−2n^2 ) } +(1/2) ∫_((√2)/n) ^(n(√2)) e^(−r^2 ) dr ⇒  A_n =((π(√2))/4){  (1/n) e^(−(2/n^2 ))   −n e^(−2n^2 ) } +(π/4) ∫_((√2)/n) ^(n(√2))   e^(−r^2 ) dr...  2) we have lim_(n→+∞)    (1/n) e^(−(2/n^2 ))   −n e^(−2n^2 )  =0  and lim_(n→+∞)   ∫_((√2)/n) ^(n(√2))  e^(−r^2 ) dr  =∫_0 ^∞   e^(−r^2 ) dr =((√π)/2) ⇒ lim_(n→+∞)  A_n =((π(√π))/8) .
letusethechangementx=rcosθandy=rsinθwehave1nxnand1nyn2n2x2+y22n22n2r22n22nrn2alsowehavex0andy00θπ2An=2nrn2and0θπ2er2rrdrdθ=wnr2er2drdθ=(2nn2r2er2dr)0π2dθ=π22nn2r2er2drbypartsu=randv=rer22nn2r(rer2)dr=[12rer2]2nn2+122nn2er2dr=12{2ne2n2n2e2n2}+122nn2er2drAn=π24{1ne2n2ne2n2}+π42nn2er2dr2)wehavelimn+1ne2n2ne2n2=0andlimn+2nn2er2dr=0er2dr=π2limn+An=ππ8.

Leave a Reply

Your email address will not be published. Required fields are marked *