Menu Close

let-A-n-W-n-e-xy-x-2-y-2-dxdy-with-W-n-1-n-n-1-n-n-1-find-A-n-interms-of-n-2-determine-lim-n-A-n-




Question Number 56938 by maxmathsup by imad last updated on 26/Mar/19
let A_n =∫∫_W_n  e^(−xy) (√(x^2  +y^2 ))dxdy   with W_n =[(1/n),n[×[(1/n),n[  1) find A_n interms of n  2) determine lim_(n→+∞)  A_n
$${let}\:{A}_{{n}} =\int\int_{{W}_{{n}} } {e}^{−{xy}} \sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{dxdy}\:\:\:{with}\:{W}_{{n}} =\left[\frac{\mathrm{1}}{{n}},{n}\left[×\left[\frac{\mathrm{1}}{{n}},{n}\left[\right.\right.\right.\right. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{A}_{{n}} {interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *