let-A-p-0-sin-px-e-x-1-dx-with-p-gt-0-1-give-A-p-at-form-of-serie-2-give-A-1-at-form-of-serie- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42191 by maxmathsup by imad last updated on 19/Aug/18 letAp=∫0∞sin(px)ex−1dxwithp>01)giveApatformofserie2)giveA1atformofserie. Commented by maxmathsup by imad last updated on 20/Aug/18 1)wehaveAp=∫0∞e−xsin(px)1−e−xdx=∫0∞(∑n=0∞e−nx)e−xsin(px))dx=∑n=0∞∫0∞e−(n+1)xsin(px)dx=(n+1)x=t∑n=0∞∫0∞e−tsin(ptn+1)dtn+1=∑n=0∞1n+1∫0∞e−tsin(pn+1t)dtletcalculateIλ=∫0∞e−tsin(λt)dt⇒Iλ=Im(∫0∞e−t+iλtdt)but∫0∞e(−1+iλ)tdt=[1−1+iλe(−1+iλ)t]0∞=−1−1+iλ=11−iλ=1+iλ1+λ2⇒Iλ=λ1+λ2⇒Ap=∑n=0∞1n+1(pn+11+(pn+1)2)=∑n=0∞1n+1(pn+1(n+1)2(n+1)2+p2)=∑n=0∞p(n+1)2+p2⇒Ap=∑n=0∞p(n+1)2+p22)A1=∑n=0∞1(n+1)2+1=∑n=1∞1n2+1. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Determine-all-possible-solutions-to-the-equation-1-t-3-x-t-t-2-x-t-t-x-t-2-0-Next Next post: Question-107728 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.