Menu Close

let-A-p-0-sin-px-e-x-1-dx-with-p-gt-0-1-give-A-p-at-form-of-serie-2-give-A-1-at-form-of-serie-




Question Number 42191 by maxmathsup by imad last updated on 19/Aug/18
let A_p =∫_0 ^∞   ((sin(px))/(e^x −1)) dx  with p>0  1)give A_p   at form of serie  2) give A_1  at form of serie .
letAp=0sin(px)ex1dxwithp>01)giveApatformofserie2)giveA1atformofserie.
Commented by maxmathsup by imad last updated on 20/Aug/18
1) we have A_p =∫_0 ^∞   ((e^(−x)  sin(px))/(1−e^(−x) )) dx =∫_0 ^∞  (Σ_(n=0) ^∞  e^(−nx) )e^(−x) sin(px))dx  =Σ_(n=0) ^∞     ∫_0 ^∞   e^(−(n+1)x) sin(px) dx =_((n+1)x =t)  Σ_(n=0) ^∞    ∫_0 ^∞   e^(−t) sin(p(t/(n+1)))(dt/(n+1))  = Σ_(n=0) ^∞  (1/(n+1)) ∫_0 ^∞    e^(−t)   sin((p/(n+1))t)dt  let calculate  I_λ =∫_0 ^∞   e^(−t)  sin(λt) dt ⇒I_λ = Im(∫_0 ^∞   e^(−t+iλt) dt)  but  ∫_0 ^∞   e^((−1+iλ)t) dt =[ (1/(−1+iλ)) e^((−1+iλ)t) ]_0 ^∞  =−(1/(−1+iλ)) =(1/(1−iλ))  =((1+iλ)/(1+λ^2 )) ⇒ I_λ =(λ/(1+λ^2 )) ⇒ A_p =Σ_(n=0) ^∞  (1/(n+1))(((p/(n+1))/(1+((p/(n+1)))^2 )))  = Σ_(n=0) ^∞   (1/(n+1))((p/(n+1))(((n+1)^2 )/((n+1)^2  +p^2 )))= Σ_(n=0) ^∞     (p/((n+1)^2  +p^2 )) ⇒  A_p =Σ_(n=0) ^∞    (p/((n+1)^2  +p^2 ))  2)  A_1 =Σ_(n=0) ^∞     (1/((n+1)^2  +1)) = Σ_(n=1) ^∞    (1/(n^2  +1))  .
1)wehaveAp=0exsin(px)1exdx=0(n=0enx)exsin(px))dx=n=00e(n+1)xsin(px)dx=(n+1)x=tn=00etsin(ptn+1)dtn+1=n=01n+10etsin(pn+1t)dtletcalculateIλ=0etsin(λt)dtIλ=Im(0et+iλtdt)but0e(1+iλ)tdt=[11+iλe(1+iλ)t]0=11+iλ=11iλ=1+iλ1+λ2Iλ=λ1+λ2Ap=n=01n+1(pn+11+(pn+1)2)=n=01n+1(pn+1(n+1)2(n+1)2+p2)=n=0p(n+1)2+p2Ap=n=0p(n+1)2+p22)A1=n=01(n+1)2+1=n=11n2+1.

Leave a Reply

Your email address will not be published. Required fields are marked *