Menu Close

let-A-p-n-1-n-p-x-n-with-p-integr-and-x-1-1-1-calculate-A-1-A-2-and-A-3-2-find-a-relation-of-recurrence-betwen-the-A-n-3-calculate-n-1-n-4-x-n-and-n-1-n-5




Question Number 46849 by maxmathsup by imad last updated on 01/Nov/18
let A_p =Σ_(n=1) ^∞  n^p x^n     with p integr . and x ∈]−1,1[ .  1) calculate A_1 ,A_2  and A_3   2) find a relation of recurrence  betwen the A_n   3) calculate Σ_(n=1) ^∞  n^4 x^n  and Σ_(n=1) ^∞  n^5 x^n  .
$$\left.{let}\:{A}_{{p}} =\sum_{{n}=\mathrm{1}} ^{\infty} \:{n}^{{p}} {x}^{{n}} \:\:\:\:{with}\:{p}\:{integr}\:.\:{and}\:{x}\:\in\right]−\mathrm{1},\mathrm{1}\left[\:.\right. \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{\mathrm{1}} ,{A}_{\mathrm{2}} \:{and}\:{A}_{\mathrm{3}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{relation}\:{of}\:{recurrence}\:\:{betwen}\:{the}\:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{n}^{\mathrm{4}} {x}^{{n}} \:{and}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{n}^{\mathrm{5}} {x}^{{n}} \:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *