Menu Close

Let-a-sequence-a-n-satisfies-a-1-1-na-n-n-2-k-1-n-1-a-k-n-gt-2-Find-the-value-of-a-2021-




Question Number 129413 by ZiYangLee last updated on 15/Jan/21
Let a sequence {a_n } satisfies       { ((            a_1 =1)),((na_n =n+2Σ_(k=1) ^(n−1) a_k , n>2)) :}  Find the value of a_(2021) .
Letasequence{an}satisfies{a1=1nan=n+2n1k=1ak,n>2Findthevalueofa2021.
Commented by JDamian last updated on 15/Jan/21
a_2  is not defined, isn′t it?
a2isnotdefined,isntit?
Answered by Olaf last updated on 15/Jan/21
2a_2  = 2+2a_1  = 4 ⇒ a_2  = 2  3a_3  = 3+2(a_2 +a_1 ) = 9 ⇒ a_3  = 3  4a_4  = 4+2(a_3 +a_2 +a_1 ) = 16 ⇒ a_4  = 4  5a_5  = 5+2(a_4 +a_3 +a_2 +a_1 ) = 25 ⇒ a_5  = 5  a_n  = n ?  It′s true for n = 1 : a_1  = 1  Suppose a_k  = k, k ≤ n−1, then by induction :  na_n  = n+2Σ_(k=1) ^(n−1) a_k  = n+2Σ_(k=1) ^(n−1) k  na_n  = n+2(((n−1)n)/2) = n^2   ⇒ a_n  = n    a_(2021)  = 2021
2a2=2+2a1=4a2=23a3=3+2(a2+a1)=9a3=34a4=4+2(a3+a2+a1)=16a4=45a5=5+2(a4+a3+a2+a1)=25a5=5an=n?Itstrueforn=1:a1=1Supposeak=k,kn1,thenbyinduction:nan=n+2n1k=1ak=n+2n1k=1knan=n+2(n1)n2=n2an=na2021=2021
Commented by JDamian last updated on 16/Jan/21
but that method is for n>2, not for n=2
butthatmethodisforn>2,notforn=2

Leave a Reply

Your email address will not be published. Required fields are marked *