Menu Close

Let-a-sequence-a-n-satisfies-a-n-2-n-1-2ln-a-n-1-1-a-n-1-n-2-Prove-that-a-n-1-1-n-for-all-n-N-




Question Number 107946 by ZiYangLee last updated on 13/Aug/20
Let a sequence {a_n } satisfies  a_n = { ((2, n=1)),((2ln(a_(n−1) )+(1/a_(n−1) ) , n≥2)) :}  Prove that   a_n ≥1+(1/n) for all n∈N.
$$\mathrm{Let}\:\mathrm{a}\:\mathrm{sequence}\:\left\{{a}_{\mathrm{n}} \right\}\:\mathrm{satisfies} \\ $$$${a}_{\mathrm{n}} =\begin{cases}{\mathrm{2},\:\mathrm{n}=\mathrm{1}}\\{\mathrm{2ln}\left({a}_{\mathrm{n}−\mathrm{1}} \right)+\frac{\mathrm{1}}{{a}_{\mathrm{n}−\mathrm{1}} }\:,\:\mathrm{n}\geqslant\mathrm{2}}\end{cases} \\ $$$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$${a}_{\mathrm{n}} \geqslant\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\in\mathbb{N}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *