Menu Close

let-A-t-sin-xt-x-1-i-2-dx-with-t-from-R-2-calculate-A-t-2-extract-Re-A-t-and-Im-A-t-3-find-the-value-of-cos-3x-x-1-i-2-dx-




Question Number 36168 by abdo mathsup 649 cc last updated on 29/May/18
let A(t) = ∫_(−∞) ^(+∞)     ((sin(xt))/(( x +1+i)^2 )) dx  with t from R  2) calculate A(t)  2) extract Re(A(t)) and Im(A(t))  3) find the value of  ∫_(−∞) ^(+∞)      ((cos(3x))/((x+1+i)^2 ))dx
letA(t)=+sin(xt)(x+1+i)2dxwithtfromR2)calculateA(t)2)extractRe(A(t))andIm(A(t))3)findthevalueof+cos(3x)(x+1+i)2dx
Commented by maxmathsup by imad last updated on 20/Aug/18
2) we have A(t) =∫_(−∞) ^(+∞)    ((sin(xt)(x+1−i)^2 )/((x+1+i)^2 (x+1−i)^2 ))dx  = ∫_(−∞) ^(+∞)    ((sin(xt){x^2  +2x(1−i) +(1−i)^2 })/({(x+1)^2  +1}^2 )) dx  =∫_(−∞) ^(+∞)    ((sin(xt){ x^2  +2x−2xi −2i })/({(x+1)^z  +1}^2 ))dx  =∫_(−∞) ^(+∞)   (((x^2  +2x)sin(xt))/({(x+1)^2  +1}^2 ))dx + i ∫_(−∞) ^(+∞)   (((−2x−2)sin(xt))/({(x+1)^2  +1}^2 ))dx ⇒  Re(A(x)) =∫_(−∞) ^(+∞)   (((x^2  +2x)sin(xt))/({(x+1)^2  +1}^2 ))dx  and  Im (A(x)) = ∫_(−∞) ^(+∞)   (((−2x−2)sin(xt))/({(x+1)^2  +1}^2 )) dx
2)wehaveA(t)=+sin(xt)(x+1i)2(x+1+i)2(x+1i)2dx=+sin(xt){x2+2x(1i)+(1i)2}{(x+1)2+1}2dx=+sin(xt){x2+2x2xi2i}{(x+1)z+1}2dx=+(x2+2x)sin(xt){(x+1)2+1}2dx+i+(2x2)sin(xt){(x+1)2+1}2dxRe(A(x))=+(x2+2x)sin(xt){(x+1)2+1}2dxandIm(A(x))=+(2x2)sin(xt){(x+1)2+1}2dx
Commented by maxmathsup by imad last updated on 21/Aug/18
3) let I = ∫_(−∞) ^(+∞)    ((cos(3x))/((x+1+i)^2 ))dx ⇒I = ∫_(−∞) ^(+∞)   ((cos(3x)(x+1−i)^2 )/((x+1+i)^2 (x+1−i)^2 ))dx  = ∫_(−∞) ^(+∞)    ((cos(3x){x^2  +2x(1−i) +(1−i)^2 ))/({(x+1)^2  +1}^2 )) dx  = ∫_(−∞) ^(+∞)    ((cos(3x){x^2  +2x −2xi −2i})/({(x+1)^2  +1}^2 )) dx  =∫_(−∞) ^(+∞)   (((x^2  +2x)cos(3x))/({(x+1)^2  +1}^2 )) dx + i∫_(−∞) ^(+∞)    (((−2x−2)cos(3x))/({(x+1)^2  +1}^2 )) dx =H +iK  let find H   H = Re( ∫_(−∞) ^(+∞)   (((x^2  +2x)e^(i3x) )/({(x+1)^2  +1}^2 ))dx)  cha7gement x+1 =t give  ∫_(−∞) ^(+∞)    (((x^2  +2x)e^(i3x) )/({(x+1)^2  +1}^2 ))dx = ∫_(−∞) ^(+∞)   (({(t−1)^2  +2(t−1)}e^(i3(t−1)) )/((t^2  +1)^2 ))  = ∫_(−∞) ^(+∞)   (({t^2 −2t +1 +2t−2} e^(i3(t−1)) )/((t^2  +1)^2 ))dt=e^(−3i) ∫_(−∞) ^(+∞)    (((t^2  −1)e^(i3t) )/((t^2  +1)^2 ))dt  let ϕ(z) =(((z^2  −1)e^(i3z) )/((z^2  +1)^2 ))  we have ϕ(z) =(((z^2 −1) e^(3iz) )/((z−i)^2 (z+i)^2 ))  the poles of ϕ are i and −i(doubles) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)   but  Res(ϕ,i) =lim_(z→i) { (z−i)^2 ϕ(z)}^((1)) =lim_(z→i) {(((z^2 −1)e^(3iz) )/((z+i)^2 ))}^((1))   = lim_(z→i)      (((2z e^(3iz)  +3i(z^2 −1)e^(3iz) )(z+i)^2  −2(z+i)(z^2 −i)e^(3iz) )/((z+i)^4 ))  =lim_(z→i)    (((2z +3iz^2  −3i)e^(3iz) (z+i) −2(z^2 −i) e^(3iz) )/((z+i)^3 ))  =(((2i−3i −3i)e^(−3) (2i) −2(−1−i)e^(−3) )/((2i)^3 )) = ((−4i(2i)e^(−3)  +2(1+i)e^(−3) )/(−8i))   =−(((10 +2i)e^(−3) )/(8i)) =((i(5 +i)e^(−3) )/4) ⇒  e^(−3i)   ∫_(−∞) ^(+∞)   ϕ(z)dz =e^(−3i )  {2iπ ((i(5+i)e^(−3) )/4)} =e^(−3i)  (−(π/2)(5+i))  =−(π/2)(5+i)( cos(3)−isin(3))  =−(π/2){5 cos(3)−5i sin(3) +i cos(3) +sin(3)}  H =Re( ∫...) =−(π/2)( 5 cos(3) +sin(3))   let find k  we have  −K =Re( ∫_(−∞) ^(+∞)  (((2x+2) e^(i3x) )/({(x+1)^2  +1}^2 ))dx)   changement x+1 =t give  ∫_(−∞) ^(+∞)   (((2x+2) e^(i3x) )/({(x+1)^2  +1}^2 ))dx =∫_(−∞) ^(+∞)   (({2(t−1) +2}e^(i3(t−1)) )/({t^2  +1}^2 ))dt  = ∫_(−∞) ^(+∞)     ((2t e^(−3i)  e^(i3t) )/((t^2  +1)^2 ))dt = 2 e^(−3i)   ∫_(−∞) ^(+∞)    ((t e^(3it) )/((t^2  +1)^2 ))dt let  ϕ(z) =((z e^(3iz) )/((z^2  +1)^2 ))  ⇒ ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Re(ϕ,i)....be continued...
3)letI=+cos(3x)(x+1+i)2dxI=+cos(3x)(x+1i)2(x+1+i)2(x+1i)2dx=+cos(3x){x2+2x(1i)+(1i)2){(x+1)2+1}2dx=+cos(3x){x2+2x2xi2i}{(x+1)2+1}2dx=+(x2+2x)cos(3x){(x+1)2+1}2dx+i+(2x2)cos(3x){(x+1)2+1}2dx=H+iKletfindHH=Re(+(x2+2x)ei3x{(x+1)2+1}2dx)cha7gementx+1=tgive+(x2+2x)ei3x{(x+1)2+1}2dx=+{(t1)2+2(t1)}ei3(t1)(t2+1)2=+{t22t+1+2t2}ei3(t1)(t2+1)2dt=e3i+(t21)ei3t(t2+1)2dtletφ(z)=(z21)ei3z(z2+1)2wehaveφ(z)=(z21)e3iz(zi)2(z+i)2thepolesofφareiandi(doubles)+φ(z)dz=2iπRes(φ,i)butRes(φ,i)=limzi{(zi)2φ(z)}(1)=limzi{(z21)e3iz(z+i)2}(1)=limzi(2ze3iz+3i(z21)e3iz)(z+i)22(z+i)(z2i)e3iz(z+i)4=limzi(2z+3iz23i)e3iz(z+i)2(z2i)e3iz(z+i)3=(2i3i3i)e3(2i)2(1i)e3(2i)3=4i(2i)e3+2(1+i)e38i=(10+2i)e38i=i(5+i)e34e3i+φ(z)dz=e3i{2iπi(5+i)e34}=e3i(π2(5+i))=π2(5+i)(cos(3)isin(3))=π2{5cos(3)5isin(3)+icos(3)+sin(3)}H=Re()=π2(5cos(3)+sin(3))letfindkwehaveK=Re(+(2x+2)ei3x{(x+1)2+1}2dx)changementx+1=tgive+(2x+2)ei3x{(x+1)2+1}2dx=+{2(t1)+2}ei3(t1){t2+1}2dt=+2te3iei3t(t2+1)2dt=2e3i+te3it(t2+1)2dtletφ(z)=ze3iz(z2+1)2+φ(z)dz=2iπRe(φ,i).becontinued
Commented by math khazana by abdo last updated on 21/Aug/18
H =−(π/2) e^(−3) (5cos(3)+sin(3)) .
H=π2e3(5cos(3)+sin(3)).

Leave a Reply

Your email address will not be published. Required fields are marked *