Menu Close

let-A-x-0-1-ln-1-ix-2-dx-find-a-simple-form-of-f-x-x-R-




Question Number 34771 by abdo mathsup 649 cc last updated on 10/May/18
let A(x)= ∫_0 ^1  ln(1+ix^2 )dx  find a simple form of f(x)    (x∈R)
letA(x)=01ln(1+ix2)dxfindasimpleformoff(x)(xR)
Commented by abdo mathsup 649 cc last updated on 13/May/18
we have 1+ix^2 =(√(1+x^4 )) ((1/( (√(1+x^4 )))) +i(x^2 /( (√(1+x^4 )))))  =r e^(iθ)  ⇒r= (√(1+x^4 ))  and  cosθ =(1/( (√(1+x^4 ))))  ,sinθ=(x^2 /( (√(1+x^2 ))))  ⇒tanθ =x^2  ⇒θ =arctan(x^2 ) ⇒  1+ix^2  =(√(1+x^4 )) e^(iarctan(x^2 ))  ⇒  ln(1+ix^2 ) = (1/2)ln(1+x^4 ) +i arctan(x^2 ) ⇒  A(x) = (1/2)∫_0 ^1 ln(1+x^4 )dx  +i ∫_0 ^1  arctan(x^2 )dx  A +iB  by parts  B = [x arctan(x^2 )]_0 ^1  −∫_0 ^1   ((2x^2 )/(1+x^4 ))dx  B = (π/4) − ∫_0 ^1    ((2x^2 )/(1+x^4 ))dx  is calculated after   decomposition of F(x)= ((2x^2 )/(1+x^4 )) ....  ln^′ (1+t) =(1/(1+t)) =Σ_(n=0) ^∞  (−1)^n t^n  ⇒  ln(1+t)= Σ_(n=0) ^∞   (((−1)^n t^(n+1) )/(n+1)) =Σ_(n=1) ^∞  (((−1)^(n−1)  t^n )/n)  ⇒ln(1+x^4 ) = Σ_(n=1) ^∞   (((−1)^(n−1) )/n) x^(4n)   ⇒  A =(1/2) ∫_0 ^1  Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^(4n)   =(1/2) Σ_(n=1) ^∞  (((−1)^(n−1) )/n) (1/(4n+1))  (A/2) = Σ_(n=1) ^∞     (((−1)^(n−1) )/(4n(4n+1))) = Σ_(n=1) ^∞  (−1)^(n−1) {(1/(4n)) −(1/(4n+1))}  = (1/4) Σ_(n=1) ^∞  (((−1)^(n−1) )/n)   −Σ_(n=1) ^∞    (((−1)^(n−1) )/(4n+1))  =(1/4)ln(2)   + Σ_(n=1) ^∞    (((−1)^n )/(4n+1))  let w(x) = Σ_(n=1) ^∞    (((−1)^n )/(4n+1)) x^(4n+1)   w^′ (x) = Σ_(n=1) ^∞    (−1)^n  x^(4n)  = Σ_(n=1) ^∞  (−x^4 )^n   = (1/(1+x^4 )) ⇒w(x)= ∫_0 ^x    (dt/(1+t^4 )) + c    but c=w(0)=0  ⇒ Σ_(n=1) ^∞    (((−1)^n )/(4n+1)) = ∫_0 ^1      (dt/(1+t^4 )) ...the value of this  integral is known after decoposition...  =
wehave1+ix2=1+x4(11+x4+ix21+x4)=reiθr=1+x4andcosθ=11+x4,sinθ=x21+x2tanθ=x2θ=arctan(x2)1+ix2=1+x4eiarctan(x2)ln(1+ix2)=12ln(1+x4)+iarctan(x2)A(x)=1201ln(1+x4)dx+i01arctan(x2)dxA+iBbypartsB=[xarctan(x2)]01012x21+x4dxB=π4012x21+x4dxiscalculatedafterdecompositionofF(x)=2x21+x4.ln(1+t)=11+t=n=0(1)ntnln(1+t)=n=0(1)ntn+1n+1=n=1(1)n1tnnln(1+x4)=n=1(1)n1nx4nA=1201n=1(1)n1nx4n=12n=1(1)n1n14n+1A2=n=1(1)n14n(4n+1)=n=1(1)n1{14n14n+1}=14n=1(1)n1nn=1(1)n14n+1=14ln(2)+n=1(1)n4n+1letw(x)=n=1(1)n4n+1x4n+1w(x)=n=1(1)nx4n=n=1(x4)n=11+x4w(x)=0xdt1+t4+cbutc=w(0)=0n=1(1)n4n+1=01dt1+t4thevalueofthisintegralisknownafterdecoposition=

Leave a Reply

Your email address will not be published. Required fields are marked *