let-A-x-0-1-ln-1-ix-2-dx-find-a-simple-form-of-f-x-x-R- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 34771 by abdo mathsup 649 cc last updated on 10/May/18 letA(x)=∫01ln(1+ix2)dxfindasimpleformoff(x)(x∈R) Commented by abdo mathsup 649 cc last updated on 13/May/18 wehave1+ix2=1+x4(11+x4+ix21+x4)=reiθ⇒r=1+x4andcosθ=11+x4,sinθ=x21+x2⇒tanθ=x2⇒θ=arctan(x2)⇒1+ix2=1+x4eiarctan(x2)⇒ln(1+ix2)=12ln(1+x4)+iarctan(x2)⇒A(x)=12∫01ln(1+x4)dx+i∫01arctan(x2)dxA+iBbypartsB=[xarctan(x2)]01−∫012x21+x4dxB=π4−∫012x21+x4dxiscalculatedafterdecompositionofF(x)=2x21+x4….ln′(1+t)=11+t=∑n=0∞(−1)ntn⇒ln(1+t)=∑n=0∞(−1)ntn+1n+1=∑n=1∞(−1)n−1tnn⇒ln(1+x4)=∑n=1∞(−1)n−1nx4n⇒A=12∫01∑n=1∞(−1)n−1nx4n=12∑n=1∞(−1)n−1n14n+1A2=∑n=1∞(−1)n−14n(4n+1)=∑n=1∞(−1)n−1{14n−14n+1}=14∑n=1∞(−1)n−1n−∑n=1∞(−1)n−14n+1=14ln(2)+∑n=1∞(−1)n4n+1letw(x)=∑n=1∞(−1)n4n+1x4n+1w′(x)=∑n=1∞(−1)nx4n=∑n=1∞(−x4)n=11+x4⇒w(x)=∫0xdt1+t4+cbutc=w(0)=0⇒∑n=1∞(−1)n4n+1=∫01dt1+t4…thevalueofthisintegralisknownafterdecoposition…= Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-100304Next Next post: find-lim-n-n-p-sin-2-n-n-p-1-with0-lt-p-lt-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.