Question Number 43823 by abdo.msup.com last updated on 15/Sep/18

Commented by maxmathsup by imad last updated on 17/Sep/18
![1) we have ϕ(a,x) =∫_0 ^(π/2) (dt/(x+a ((1−cos(2t))/2))) = ∫_0 ^(π/2) ((2dt)/(2x +a −a cos(2t))) =_(2t =u) ∫_0 ^π (du/(2x +a−acosu)) =_(tan((u/2))=α) ∫_0 ^∞ (1/(2x+a−a((1−α^2 )/(1+α^2 )))) ((2dα)/(1+α^2 )) = ∫_0 ^∞ ((2 dα)/((2x+1)(1+α^2 )−a(1−α^2 ))) =∫_0 ^∞ ((2dα)/((2x+1) +(2x+1 +a)α^2 −a)) = ∫_0 ^∞ ((2dα)/((2x+1+a)α^2 + 2x+1−a)) =(2/((2x+1+a))) ∫_0 ^∞ (dα/(α^2 +((2x+1−a)/(2x+1+a)))) case 1 ((2x+1−a)/(2x+1+a))>0 changement α =(√((2x+1−a)/(2x+1+a)))z give ϕ(a,x) = (2/((2x+1+a))) ∫_0 ^∞ (1/(((2x+1−a)/(2x+1 +a))(1+z^2 ))) (√((2x+1−a)/(2x+1+a)))dz =(2/(2x+1+a)) ((2x+1+a)/(2x+1−a)) (√((2x+1−a)/(2x+1+a)))(π/2) =(π/(2x+1+a)) (√((2x+1+a)/(2x+1−a))) = (π/( (√((2x+1+a)^2 −a^2 )))) case 2 ((2x+1−a)/(2x+1 +a))<0 ⇒ϕ(a,x) = (2/(2x+1+a)) ∫_0 ^∞ (dα/(α^2 −((a−(2x+1))/(a+2x+1)))) changement α =(√((a−(2x+1))/(a+2x+1)))z give ϕ(a,x) = (2/(2x+1+a)) ∫_0 ^∞ (1/(((a−(2x+1))/(a+2x+1))(z^2 −1))) (√((a−(2x+1))/(a+(2x+1)))) dz = (2/(2x+1+a)) ((a +2x+1)/(a−(2x+1))) (√((a−(2x+1))/(a+(2x+1))))∫_0 ^∞ (dz/(z^2 −1)) = (π/( (√(a^2 −(2x+1)^2 )))) (1/2)∫_0 ^∞ {(1/(z−1)) −(1/(z+1))}dz =(π/(2(√(a^2 −(2x+1)^2 ))))[ln∣((z−1)/(z+1))∣]_0 ^(+∞) =0](https://www.tinkutara.com/question/Q43920.png)
Commented by maxmathsup by imad last updated on 17/Sep/18

Commented by maxmathsup by imad last updated on 17/Sep/18

Commented by maxmathsup by imad last updated on 18/Sep/18
