Menu Close

let-a-x-0-pi-2-dt-x-asin-2-t-2-find-a-exlicite-form-of-a-x-3-determine-1-x-and-a-1-4-find-the-vslue-of-0-pi-2-dt-2-3sin-2-t-5-find-0-pi-2-dt-x-asin-2-t-2-




Question Number 43823 by abdo.msup.com last updated on 15/Sep/18
let ϕ(a,x) =∫_0 ^(π/2)   (dt/(x+asin^2 t))  2) find a exlicite form of ϕ(a,x)  3)determine ϕ(1,x)and ϕ(a,1)  4)find the vslue of ∫_0 ^(π/2)    (dt/(2+3sin^2 t))  5)find  ∫_0 ^(π/2)    (dt/((x+asin^2 t)^2 ))  6) find ∫_0 ^(π/2)   ((sin^2 t)/((x+a sin^2 t)^2 ))dt .
letφ(a,x)=0π2dtx+asin2t2)findaexliciteformofφ(a,x)3)determineφ(1,x)andφ(a,1)4)findthevslueof0π2dt2+3sin2t5)find0π2dt(x+asin2t)26)find0π2sin2t(x+asin2t)2dt.
Commented by maxmathsup by imad last updated on 17/Sep/18
1) we have ϕ(a,x) =∫_0 ^(π/2)   (dt/(x+a ((1−cos(2t))/2))) = ∫_0 ^(π/2)    ((2dt)/(2x +a −a cos(2t)))  =_(2t =u)     ∫_0 ^π    (du/(2x +a−acosu)) =_(tan((u/2))=α)  ∫_0 ^∞     (1/(2x+a−a((1−α^2 )/(1+α^2 )))) ((2dα)/(1+α^2 ))  = ∫_0 ^∞      ((2 dα)/((2x+1)(1+α^2 )−a(1−α^2 ))) =∫_0 ^∞     ((2dα)/((2x+1) +(2x+1 +a)α^2 −a))  = ∫_0 ^∞      ((2dα)/((2x+1+a)α^2  + 2x+1−a)) =(2/((2x+1+a))) ∫_0 ^∞      (dα/(α^2  +((2x+1−a)/(2x+1+a))))  case 1   ((2x+1−a)/(2x+1+a))>0 changement α =(√((2x+1−a)/(2x+1+a)))z give  ϕ(a,x) = (2/((2x+1+a)))  ∫_0 ^∞   (1/(((2x+1−a)/(2x+1 +a))(1+z^2 ))) (√((2x+1−a)/(2x+1+a)))dz  =(2/(2x+1+a)) ((2x+1+a)/(2x+1−a)) (√((2x+1−a)/(2x+1+a)))(π/2) =(π/(2x+1+a)) (√((2x+1+a)/(2x+1−a)))  = (π/( (√((2x+1+a)^2 −a^2 ))))  case 2   ((2x+1−a)/(2x+1 +a))<0 ⇒ϕ(a,x) = (2/(2x+1+a)) ∫_0 ^∞   (dα/(α^2 −((a−(2x+1))/(a+2x+1))))  changement  α =(√((a−(2x+1))/(a+2x+1)))z give  ϕ(a,x) = (2/(2x+1+a))  ∫_0 ^∞      (1/(((a−(2x+1))/(a+2x+1))(z^2 −1))) (√((a−(2x+1))/(a+(2x+1)))) dz  = (2/(2x+1+a)) ((a +2x+1)/(a−(2x+1))) (√((a−(2x+1))/(a+(2x+1))))∫_0 ^∞    (dz/(z^2 −1))  = (π/( (√(a^2 −(2x+1)^2 )))) (1/2)∫_0 ^∞    {(1/(z−1)) −(1/(z+1))}dz =(π/(2(√(a^2 −(2x+1)^2 ))))[ln∣((z−1)/(z+1))∣]_0 ^(+∞)  =0
1)wehaveφ(a,x)=0π2dtx+a1cos(2t)2=0π22dt2x+aacos(2t)=2t=u0πdu2x+aacosu=tan(u2)=α012x+aa1α21+α22dα1+α2=02dα(2x+1)(1+α2)a(1α2)=02dα(2x+1)+(2x+1+a)α2a=02dα(2x+1+a)α2+2x+1a=2(2x+1+a)0dαα2+2x+1a2x+1+acase12x+1a2x+1+a>0changementα=2x+1a2x+1+azgiveφ(a,x)=2(2x+1+a)012x+1a2x+1+a(1+z2)2x+1a2x+1+adz=22x+1+a2x+1+a2x+1a2x+1a2x+1+aπ2=π2x+1+a2x+1+a2x+1a=π(2x+1+a)2a2case22x+1a2x+1+a<0φ(a,x)=22x+1+a0dαα2a(2x+1)a+2x+1changementα=a(2x+1)a+2x+1zgiveφ(a,x)=22x+1+a01a(2x+1)a+2x+1(z21)a(2x+1)a+(2x+1)dz=22x+1+aa+2x+1a(2x+1)a(2x+1)a+(2x+1)0dzz21=πa2(2x+1)2120{1z11z+1}dz=π2a2(2x+1)2[lnz1z+1]0+=0
Commented by maxmathsup by imad last updated on 17/Sep/18
2) for a =1 we get ((2x+1−a)/(2x+1+a)) =((2x)/(2x+2)) =(x/(x+1))  case 1  (x/(x+1))>0 ⇒ϕ(1,x) = (π/( (√(4(x+1)^2 −1))))  case 2  (x/(x+1))<0 ⇒ϕ(1,x) =0  also for x=1  we have ((2x+1−a)/(2x+1+a)) =((3−a)/(3+a))  case 1  ((3−a)/(3+a))>0 ⇒ ϕ(a,1) = (π/( (√((3+a)^2 −a^2 ))))  case 2  ((3−a)/(3+a))<0 ⇒ϕ(a,1)=0 .
2)fora=1weget2x+1a2x+1+a=2x2x+2=xx+1case1xx+1>0φ(1,x)=π4(x+1)21case2xx+1<0φ(1,x)=0alsoforx=1wehave2x+1a2x+1+a=3a3+acase13a3+a>0φ(a,1)=π(3+a)2a2case23a3+a<0φ(a,1)=0.
Commented by maxmathsup by imad last updated on 17/Sep/18
3)  ∫_0 ^(π/2)   (dt/(2+3sin^2 t)) =ϕ(3,2) wehave a=3 and x=2  we get ((2x+1−a)/(2x+1 +a)) =((5−3)/8) =(1/4)>0 ⇒ ϕ(3,2) = (π/( (√((5+3)^2 −3^2 )))) =(π/( (√(64−9)))) =(π/( (√(55))))
3)0π2dt2+3sin2t=φ(3,2)wehavea=3andx=2weget2x+1a2x+1+a=538=14>0φ(3,2)=π(5+3)232=π649=π55
Commented by maxmathsup by imad last updated on 18/Sep/18
4) we have ϕ(a,x) = ∫_0 ^(π/2)     (dt/(x+a sin^2 t)) ⇒ (∂ϕ/∂x)(a,x) =−∫_0 ^(π/2)   (dt/((x+asin^2 t)^2 )) ⇒  ∫_0 ^(π/2)     (dt/((x +asin^2 t)^2 )) =−(∂ϕ/∂x)(a,x)  case 1 ((2x+1−a)/(2x+1+a))>0 ⇒ϕ(a,x) =π{(2x+1+a)^2 −a^2 }^(−(1/2))  ⇒  (∂ϕ/∂x)(a,x) =−(π/2)(4(2x+1+a)){(2x+1+a)^2 −a^2 }^(−(3/2))   = ((2π(2x+1+a))/(((2x+1+a)^2 −a^2 )(√((2x+1+a)^2 −a^2 )))) .  case 2 ((zx+1−a)/(2x+1+a))<0 ⇒ϕ(a,x)=0 ⇒ (∂ϕ/∂x)(a,x)=0 .
4)wehaveφ(a,x)=0π2dtx+asin2tφx(a,x)=0π2dt(x+asin2t)20π2dt(x+asin2t)2=φx(a,x)case12x+1a2x+1+a>0φ(a,x)=π{(2x+1+a)2a2}12φx(a,x)=π2(4(2x+1+a)){(2x+1+a)2a2}32=2π(2x+1+a)((2x+1+a)2a2)(2x+1+a)2a2.case2zx+1a2x+1+a<0φ(a,x)=0φx(a,x)=0.

Leave a Reply

Your email address will not be published. Required fields are marked *