Question Number 43823 by abdo.msup.com last updated on 15/Sep/18
$${let}\:\varphi\left({a},{x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{{x}+{asin}^{\mathrm{2}} {t}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{exlicite}\:{form}\:{of}\:\varphi\left({a},{x}\right) \\ $$$$\left.\mathrm{3}\right){determine}\:\varphi\left(\mathrm{1},{x}\right){and}\:\varphi\left({a},\mathrm{1}\right) \\ $$$$\left.\mathrm{4}\right){find}\:{the}\:{vslue}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\mathrm{2}+\mathrm{3}{sin}^{\mathrm{2}} {t}} \\ $$$$\left.\mathrm{5}\right){find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\left({x}+{asin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{6}\right)\:{find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sin}^{\mathrm{2}} {t}}{\left({x}+{a}\:{sin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }{dt}\:. \\ $$
Commented by maxmathsup by imad last updated on 17/Sep/18
$$\left.\mathrm{1}\right)\:{we}\:{have}\:\varphi\left({a},{x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{{x}+{a}\:\frac{\mathrm{1}−{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{\mathrm{2}{dt}}{\mathrm{2}{x}\:+{a}\:−{a}\:{cos}\left(\mathrm{2}{t}\right)} \\ $$$$=_{\mathrm{2}{t}\:={u}} \:\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{du}}{\mathrm{2}{x}\:+{a}−{acosu}}\:=_{{tan}\left(\frac{{u}}{\mathrm{2}}\right)=\alpha} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\mathrm{2}{x}+{a}−{a}\frac{\mathrm{1}−\alpha^{\mathrm{2}} }{\mathrm{1}+\alpha^{\mathrm{2}} }}\:\frac{\mathrm{2}{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{2}\:{d}\alpha}{\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)−{a}\left(\mathrm{1}−\alpha^{\mathrm{2}} \right)}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{d}\alpha}{\left(\mathrm{2}{x}+\mathrm{1}\right)\:+\left(\mathrm{2}{x}+\mathrm{1}\:+{a}\right)\alpha^{\mathrm{2}} −{a}} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{2}{d}\alpha}{\left(\mathrm{2}{x}+\mathrm{1}+{a}\right)\alpha^{\mathrm{2}} \:+\:\mathrm{2}{x}+\mathrm{1}−{a}}\:=\frac{\mathrm{2}}{\left(\mathrm{2}{x}+\mathrm{1}+{a}\right)}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{d}\alpha}{\alpha^{\mathrm{2}} \:+\frac{\mathrm{2}{x}+\mathrm{1}−{a}}{\mathrm{2}{x}+\mathrm{1}+{a}}} \\ $$$${case}\:\mathrm{1}\:\:\:\frac{\mathrm{2}{x}+\mathrm{1}−{a}}{\mathrm{2}{x}+\mathrm{1}+{a}}>\mathrm{0}\:{changement}\:\alpha\:=\sqrt{\frac{\mathrm{2}{x}+\mathrm{1}−{a}}{\mathrm{2}{x}+\mathrm{1}+{a}}}{z}\:{give} \\ $$$$\varphi\left({a},{x}\right)\:=\:\frac{\mathrm{2}}{\left(\mathrm{2}{x}+\mathrm{1}+{a}\right)}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\frac{\mathrm{2}{x}+\mathrm{1}−{a}}{\mathrm{2}{x}+\mathrm{1}\:+{a}}\left(\mathrm{1}+{z}^{\mathrm{2}} \right)}\:\sqrt{\frac{\mathrm{2}{x}+\mathrm{1}−{a}}{\mathrm{2}{x}+\mathrm{1}+{a}}}{dz} \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}{x}+\mathrm{1}+{a}}\:\frac{\mathrm{2}{x}+\mathrm{1}+{a}}{\mathrm{2}{x}+\mathrm{1}−{a}}\:\sqrt{\frac{\mathrm{2}{x}+\mathrm{1}−{a}}{\mathrm{2}{x}+\mathrm{1}+{a}}}\frac{\pi}{\mathrm{2}}\:=\frac{\pi}{\mathrm{2}{x}+\mathrm{1}+{a}}\:\sqrt{\frac{\mathrm{2}{x}+\mathrm{1}+{a}}{\mathrm{2}{x}+\mathrm{1}−{a}}} \\ $$$$=\:\frac{\pi}{\:\sqrt{\left(\mathrm{2}{x}+\mathrm{1}+{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} }} \\ $$$${case}\:\mathrm{2}\:\:\:\frac{\mathrm{2}{x}+\mathrm{1}−{a}}{\mathrm{2}{x}+\mathrm{1}\:+{a}}<\mathrm{0}\:\Rightarrow\varphi\left({a},{x}\right)\:=\:\frac{\mathrm{2}}{\mathrm{2}{x}+\mathrm{1}+{a}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{d}\alpha}{\alpha^{\mathrm{2}} −\frac{{a}−\left(\mathrm{2}{x}+\mathrm{1}\right)}{{a}+\mathrm{2}{x}+\mathrm{1}}} \\ $$$${changement}\:\:\alpha\:=\sqrt{\frac{{a}−\left(\mathrm{2}{x}+\mathrm{1}\right)}{{a}+\mathrm{2}{x}+\mathrm{1}}}{z}\:{give} \\ $$$$\varphi\left({a},{x}\right)\:=\:\frac{\mathrm{2}}{\mathrm{2}{x}+\mathrm{1}+{a}}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{1}}{\frac{{a}−\left(\mathrm{2}{x}+\mathrm{1}\right)}{{a}+\mathrm{2}{x}+\mathrm{1}}\left({z}^{\mathrm{2}} −\mathrm{1}\right)}\:\sqrt{\frac{{a}−\left(\mathrm{2}{x}+\mathrm{1}\right)}{{a}+\left(\mathrm{2}{x}+\mathrm{1}\right)}}\:{dz} \\ $$$$=\:\frac{\mathrm{2}}{\mathrm{2}{x}+\mathrm{1}+{a}}\:\frac{{a}\:+\mathrm{2}{x}+\mathrm{1}}{{a}−\left(\mathrm{2}{x}+\mathrm{1}\right)}\:\sqrt{\frac{{a}−\left(\mathrm{2}{x}+\mathrm{1}\right)}{{a}+\left(\mathrm{2}{x}+\mathrm{1}\right)}}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dz}}{{z}^{\mathrm{2}} −\mathrm{1}} \\ $$$$=\:\frac{\pi}{\:\sqrt{{a}^{\mathrm{2}} −\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }}\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\:\left\{\frac{\mathrm{1}}{{z}−\mathrm{1}}\:−\frac{\mathrm{1}}{{z}+\mathrm{1}}\right\}{dz}\:=\frac{\pi}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} −\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }}\left[{ln}\mid\frac{{z}−\mathrm{1}}{{z}+\mathrm{1}}\mid\right]_{\mathrm{0}} ^{+\infty} \:=\mathrm{0} \\ $$
Commented by maxmathsup by imad last updated on 17/Sep/18
$$\left.\mathrm{2}\right)\:{for}\:{a}\:=\mathrm{1}\:{we}\:{get}\:\frac{\mathrm{2}{x}+\mathrm{1}−{a}}{\mathrm{2}{x}+\mathrm{1}+{a}}\:=\frac{\mathrm{2}{x}}{\mathrm{2}{x}+\mathrm{2}}\:=\frac{{x}}{{x}+\mathrm{1}} \\ $$$${case}\:\mathrm{1}\:\:\frac{{x}}{{x}+\mathrm{1}}>\mathrm{0}\:\Rightarrow\varphi\left(\mathrm{1},{x}\right)\:=\:\frac{\pi}{\:\sqrt{\mathrm{4}\left({x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}}} \\ $$$${case}\:\mathrm{2}\:\:\frac{{x}}{{x}+\mathrm{1}}<\mathrm{0}\:\Rightarrow\varphi\left(\mathrm{1},{x}\right)\:=\mathrm{0} \\ $$$${also}\:{for}\:{x}=\mathrm{1}\:\:{we}\:{have}\:\frac{\mathrm{2}{x}+\mathrm{1}−{a}}{\mathrm{2}{x}+\mathrm{1}+{a}}\:=\frac{\mathrm{3}−{a}}{\mathrm{3}+{a}} \\ $$$${case}\:\mathrm{1}\:\:\frac{\mathrm{3}−{a}}{\mathrm{3}+{a}}>\mathrm{0}\:\Rightarrow\:\varphi\left({a},\mathrm{1}\right)\:=\:\frac{\pi}{\:\sqrt{\left(\mathrm{3}+{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} }} \\ $$$${case}\:\mathrm{2}\:\:\frac{\mathrm{3}−{a}}{\mathrm{3}+{a}}<\mathrm{0}\:\Rightarrow\varphi\left({a},\mathrm{1}\right)=\mathrm{0}\:. \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 17/Sep/18
$$\left.\mathrm{3}\right)\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{\mathrm{2}+\mathrm{3}{sin}^{\mathrm{2}} {t}}\:=\varphi\left(\mathrm{3},\mathrm{2}\right)\:{wehave}\:{a}=\mathrm{3}\:{and}\:{x}=\mathrm{2} \\ $$$${we}\:{get}\:\frac{\mathrm{2}{x}+\mathrm{1}−{a}}{\mathrm{2}{x}+\mathrm{1}\:+{a}}\:=\frac{\mathrm{5}−\mathrm{3}}{\mathrm{8}}\:=\frac{\mathrm{1}}{\mathrm{4}}>\mathrm{0}\:\Rightarrow\:\varphi\left(\mathrm{3},\mathrm{2}\right)\:=\:\frac{\pi}{\:\sqrt{\left(\mathrm{5}+\mathrm{3}\right)^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }}\:=\frac{\pi}{\:\sqrt{\mathrm{64}−\mathrm{9}}}\:=\frac{\pi}{\:\sqrt{\mathrm{55}}} \\ $$
Commented by maxmathsup by imad last updated on 18/Sep/18
$$\left.\mathrm{4}\right)\:{we}\:{have}\:\varphi\left({a},{x}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{{x}+{a}\:{sin}^{\mathrm{2}} {t}}\:\Rightarrow\:\frac{\partial\varphi}{\partial{x}}\left({a},{x}\right)\:=−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{\left({x}+{asin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\left({x}\:+{asin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }\:=−\frac{\partial\varphi}{\partial{x}}\left({a},{x}\right) \\ $$$${case}\:\mathrm{1}\:\frac{\mathrm{2}{x}+\mathrm{1}−{a}}{\mathrm{2}{x}+\mathrm{1}+{a}}>\mathrm{0}\:\Rightarrow\varphi\left({a},{x}\right)\:=\pi\left\{\left(\mathrm{2}{x}+\mathrm{1}+{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \right\}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:\Rightarrow \\ $$$$\frac{\partial\varphi}{\partial{x}}\left({a},{x}\right)\:=−\frac{\pi}{\mathrm{2}}\left(\mathrm{4}\left(\mathrm{2}{x}+\mathrm{1}+{a}\right)\right)\left\{\left(\mathrm{2}{x}+\mathrm{1}+{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \right\}^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$=\:\frac{\mathrm{2}\pi\left(\mathrm{2}{x}+\mathrm{1}+{a}\right)}{\left(\left(\mathrm{2}{x}+\mathrm{1}+{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\sqrt{\left(\mathrm{2}{x}+\mathrm{1}+{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} }}\:. \\ $$$${case}\:\mathrm{2}\:\frac{{zx}+\mathrm{1}−{a}}{\mathrm{2}{x}+\mathrm{1}+{a}}<\mathrm{0}\:\Rightarrow\varphi\left({a},{x}\right)=\mathrm{0}\:\Rightarrow\:\frac{\partial\varphi}{\partial{x}}\left({a},{x}\right)=\mathrm{0}\:. \\ $$