Menu Close

let-A-x-1-x-2-x-1-x-2-2i-dx-1-calculate-A-2-extract-Re-A-and-Im-A-and-determine-its-values-i-2-1-




Question Number 61921 by maxmathsup by imad last updated on 11/Jun/19
let A =∫_(−∞) ^(+∞)      ((x+1)/((x^2 +x+1)( x^2  −2i)))dx  1) calculate A  2) extract Re(A) and Im(A) and determine its values   (i^2 =−1)
letA=+x+1(x2+x+1)(x22i)dx1)calculateA2)extractRe(A)andIm(A)anddetermineitsvalues(i2=1)
Commented by maxmathsup by imad last updated on 12/Jun/19
1) residus method   let w(z) =((z+1)/((z^2  +z +1)(z^2 −2i)))  poles of w?  z^2  +z +1 =0 →Δ=1−4 =−3 =(i(√3))^2  ⇒z_1 =((−1+i(√3))/2) =e^(i((2π)/3))    z_2 =((−1−i(√3))/2) =e^(−i((2π)/3))   also  z^2 −2i =z^2 −((√2)(√i))^2  =(z−(√2)e^((iπ)/4) )(z+(√2)e^((iπ)/4) ) ⇒  w(z) =((z+1)/((z−e^(i((2π)/3)) )(z+e^((i2π)/3) )(z−(√2)e^((iπ)/4) )(z+(√2)e^((iπ)/4) )))  residus theorem give  ∫_(−∞) ^(+∞)  w(z)dz =2iπ{ Res(w,e^(i((2π)/3)) ) +Res(w,(√2)e^((iπ)/4) )}  the poles are simples ⇒  Res(w,e^((i2π)/3) ) =lim_(z→e^((i2π)/3) )    (z−e^((i2π)/3) )w(z) =((1+e^((i2π)/3) )/(2e^((i2π)/3) ( e^(i((4π)/3)) −2i)))  =((e^(−((i2π)/3))  +1)/(2( e^(−((i2π)/3)) −2i))) =−((1+e^(−((i2π)/3)) )/(2i(ie^(−((i2π)/3))  +2)))  Res(w,(√2)e^((iπ)/4) ) =lim_(z→(√2)e^((iπ)/4) )     (z−(√2)e^((iπ)/4) ) w(z) =((1+(√2)e^((iπ)/4) )/(2(√2)e^((iπ)/4) ( 2 e^((iπ)/2)  +(√2)e^((iπ)/4)  +1)))  =((e^(−((iπ)/4))  +(√2))/(2(√2)(2i +(√2)e^((iπ)/4)  +1))) =((e^(−((iπ)/4))  +(√2))/(2(√2)i(2 −i(√2)e^((iπ)/4)  −i))) ⇒  ∫_(−∞) ^(+∞)  w(z)dz =2iπ{  −((1+e^(−((i2π)/3)) )/(2i(i e^(−((i2π)/3))  +2))) +((e^(−((iπ)/4))  +(√2))/(2(√2)i(2−i−i(√2)e^((iπ)/4) ))}  =−π ((1+e^(−i((2π)/3)) )/(2+ie^(−((i2π)/3)) )) +(π/( (√2))) (((√2)+e^(−((iπ)/4)) )/(2−i −i(√2)e^((iπ)/4) )) =A rest to find A at form α+iλ
1)residusmethodletw(z)=z+1(z2+z+1)(z22i)polesofw?z2+z+1=0Δ=14=3=(i3)2z1=1+i32=ei2π3z2=1i32=ei2π3alsoz22i=z2(2i)2=(z2eiπ4)(z+2eiπ4)w(z)=z+1(zei2π3)(z+ei2π3)(z2eiπ4)(z+2eiπ4)residustheoremgive+w(z)dz=2iπ{Res(w,ei2π3)+Res(w,2eiπ4)}thepolesaresimplesRes(w,ei2π3)=limzei2π3(zei2π3)w(z)=1+ei2π32ei2π3(ei4π32i)=ei2π3+12(ei2π32i)=1+ei2π32i(iei2π3+2)Res(w,2eiπ4)=limz2eiπ4(z2eiπ4)w(z)=1+2eiπ422eiπ4(2eiπ2+2eiπ4+1)=eiπ4+222(2i+2eiπ4+1)=eiπ4+222i(2i2eiπ4i)+w(z)dz=2iπ{1+ei2π32i(iei2π3+2)+eiπ4+222i(2ii2eiπ4}=π1+ei2π32+iei2π3+π22+eiπ42ii2eiπ4=AresttofindAatformα+iλ
Answered by MJS last updated on 12/Jun/19
((x+1)/((x^2 +x+1)(x^2 −2i)))=((x^2 (x+1))/((x^2 +x+1)(x^4 +4)))+((2(x+1))/((x^2 +x+1)(x^4 +4)))i  A=∫_(−∞) ^(+∞) ((x^2 (x+1))/((x^2 +x+1)(x^4 +4)))dx+i∫_(−∞) ^(+∞) ((2(x+1))/((x^2 +x+1)(x^4 +4)))dx    ∫((x^2 (x+1))/((x^2 +x+1)(x^4 +4)))dx=∫((x^2 (x+1))/((x^2 +x+1)(x^2 −2x+2)(x^2 +2x+2)))dx=  =−(1/(13))∫((4x+1)/(x^2 +x+1))dx+(1/(52))∫((3x+8)/(x^2 −2x+2))dx+(1/4)∫(x/(x^2 +2x+2))dx=       [all are easy to solve I hope so I allow myself        to not type the paths]  =−(2/(13))ln (x^2 +x+1) +((2(√3))/(39))arctan (((√3)(2x+1))/3) +       +(3/(104))ln (x^2 −2x+2) +((11)/(52))arctan (x−1) +       +(1/8)ln (x^2 +2x+2) −(1/4)arctan (x+1) +C  ⇒ real (A) =(π/(78))(−3+4(√3))    ∫((2(x+1))/((x^2 +x+1)(x^4 +4)))dx=∫((2(x+1))/((x^2 +x+1)(x^2 −2x+2)(x^2 +2x+2)))dx=  =(2/(13))∫((3x+4)/(x^2 +x+1))dx−(1/(52))∫((11x−14)/(x^2 −2x+2))dx−(1/4)∫((x+2)/(x^2 +2x+2))dx=  =(3/(12))ln (x^2 +x+1) +((10(√3))/(39))arctan (((√3)(2x+1))/3) −       −((11)/(104))ln (x^2 −2x+2) +(3/(52))arctan (x−1) −       −(1/8)ln (x^2 +2x+2) −(1/4)arctan (x+1) +C  ⇒ imag (A) =((5π)/(78))(−3+4(√3))  A=(π/(78))(−3+4(√3))(1+5i)
x+1(x2+x+1)(x22i)=x2(x+1)(x2+x+1)(x4+4)+2(x+1)(x2+x+1)(x4+4)iA=+x2(x+1)(x2+x+1)(x4+4)dx+i+2(x+1)(x2+x+1)(x4+4)dxx2(x+1)(x2+x+1)(x4+4)dx=x2(x+1)(x2+x+1)(x22x+2)(x2+2x+2)dx==1134x+1x2+x+1dx+1523x+8x22x+2dx+14xx2+2x+2dx=[allareeasytosolveIhopesoIallowmyselftonottypethepaths]=213ln(x2+x+1)+2339arctan3(2x+1)3++3104ln(x22x+2)+1152arctan(x1)++18ln(x2+2x+2)14arctan(x+1)+Creal(A)=π78(3+43)2(x+1)(x2+x+1)(x4+4)dx=2(x+1)(x2+x+1)(x22x+2)(x2+2x+2)dx==2133x+4x2+x+1dx15211x14x22x+2dx14x+2x2+2x+2dx==312ln(x2+x+1)+10339arctan3(2x+1)311104ln(x22x+2)+352arctan(x1)18ln(x2+2x+2)14arctan(x+1)+Cimag(A)=5π78(3+43)A=π78(3+43)(1+5i)
Commented by maxmathsup by imad last updated on 12/Jun/19
thank you sir mjs.
thankyousirmjs.
Commented by MJS last updated on 12/Jun/19
you′re welcome
yourewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *