Question Number 61921 by maxmathsup by imad last updated on 11/Jun/19

Commented by maxmathsup by imad last updated on 12/Jun/19

Answered by MJS last updated on 12/Jun/19
![((x+1)/((x^2 +x+1)(x^2 −2i)))=((x^2 (x+1))/((x^2 +x+1)(x^4 +4)))+((2(x+1))/((x^2 +x+1)(x^4 +4)))i A=∫_(−∞) ^(+∞) ((x^2 (x+1))/((x^2 +x+1)(x^4 +4)))dx+i∫_(−∞) ^(+∞) ((2(x+1))/((x^2 +x+1)(x^4 +4)))dx ∫((x^2 (x+1))/((x^2 +x+1)(x^4 +4)))dx=∫((x^2 (x+1))/((x^2 +x+1)(x^2 −2x+2)(x^2 +2x+2)))dx= =−(1/(13))∫((4x+1)/(x^2 +x+1))dx+(1/(52))∫((3x+8)/(x^2 −2x+2))dx+(1/4)∫(x/(x^2 +2x+2))dx= [all are easy to solve I hope so I allow myself to not type the paths] =−(2/(13))ln (x^2 +x+1) +((2(√3))/(39))arctan (((√3)(2x+1))/3) + +(3/(104))ln (x^2 −2x+2) +((11)/(52))arctan (x−1) + +(1/8)ln (x^2 +2x+2) −(1/4)arctan (x+1) +C ⇒ real (A) =(π/(78))(−3+4(√3)) ∫((2(x+1))/((x^2 +x+1)(x^4 +4)))dx=∫((2(x+1))/((x^2 +x+1)(x^2 −2x+2)(x^2 +2x+2)))dx= =(2/(13))∫((3x+4)/(x^2 +x+1))dx−(1/(52))∫((11x−14)/(x^2 −2x+2))dx−(1/4)∫((x+2)/(x^2 +2x+2))dx= =(3/(12))ln (x^2 +x+1) +((10(√3))/(39))arctan (((√3)(2x+1))/3) − −((11)/(104))ln (x^2 −2x+2) +(3/(52))arctan (x−1) − −(1/8)ln (x^2 +2x+2) −(1/4)arctan (x+1) +C ⇒ imag (A) =((5π)/(78))(−3+4(√3)) A=(π/(78))(−3+4(√3))(1+5i)](https://www.tinkutara.com/question/Q61925.png)
Commented by maxmathsup by imad last updated on 12/Jun/19

Commented by MJS last updated on 12/Jun/19
