Menu Close

Let-ABCD-be-a-convex-quadrilateral-and-let-E-and-F-be-the-points-of-intersections-of-the-lines-AB-CD-and-AD-BC-respectively-Prove-that-the-midpoints-of-the-segments-AC-BD-and-EF-are-collinear-




Question Number 16068 by Tinkutara last updated on 21/Jun/17
Let ABCD be a convex quadrilateral  and let E and F be the points of  intersections of the lines AB, CD and  AD, BC, respectively. Prove that the  midpoints of the segments AC, BD,  and EF are collinear.
LetABCDbeaconvexquadrilateralandletEandFbethepointsofintersectionsofthelinesAB,CDandAD,BC,respectively.ProvethatthemidpointsofthesegmentsAC,BD,andEFarecollinear.
Answered by ajfour last updated on 30/Jun/17
z_I =(z_1 /2) ;   z_G =((mz_2 +z_1 +k(z_2 −z_1 ))/2) ;  z_G −z_I =(−(k/2))z_1 +(((m+k)/2))z_2                z_D =z_1 +λ(z_1 −mz_2 )   also    z_D =μ[z_1 +k(z_2 −z_1 )]   z_D −z_D =0 ⇒   (1+λ−μ+μk)z_1 −(λm+μk)z_2 =0  ⇒ 1+λ−μ(1−k)=0 and μ=−((λm)/k)  so 1+λ+((λm(1−k))/k)=0  k+λ(k+m−mk)=0   or  λ=(k/(mk−(m+k)))  z_D = z_1 +(k/([mk−(m+k)]))(z_1 −mz_2 )      =((mkz_1 −mz_1 −kz_1 +kz_1 −mkz_2 )/(mk−(m+k)))     =((m(k−1)z_1 −mkz_2 )/(mk−(m+k)))  z_H =((z_2 +z_D )/2) ⇒  z_H −z_I =((z_2 +z_D −z_1 )/2)  z_H −z_I =((z_2 −z_1 )/2)−((m(k−1)z_1 −mkz_2 )/(2(mk−m−k)))   =(((mk−m−k)(z_1 −z_2 )−mk(z_1 −z_2 )+mz_1 )/(2(mk−m−k)))  =((−kz_1 +(m+k)z_2 )/(2c))   ∀ c=mk−m−k  z_H −z_I =(1/c)[−(k/2)z_1 +(((m+k)/2))z_2 ]              =((z_G −z_I )/c)  ⇒  z_H ,z_G , and z_I  are collinear.
zI=z12;zG=mz2+z1+k(z2z1)2;zGzI=(k2)z1+(m+k2)z2zD=z1+λ(z1mz2)alsozD=μ[z1+k(z2z1)]zDzD=0(1+λμ+μk)z1(λm+μk)z2=01+λμ(1k)=0andμ=λmkso1+λ+λm(1k)k=0k+λ(k+mmk)=0orλ=kmk(m+k)zD=z1+k[mk(m+k)](z1mz2)=mkz1mz1kz1+kz1mkz2mk(m+k)=m(k1)z1mkz2mk(m+k)zH=z2+zD2zHzI=z2+zDz12zHzI=z2z12m(k1)z1mkz22(mkmk)=(mkmk)(z1z2)mk(z1z2)+mz12(mkmk)=kz1+(m+k)z22cc=mkmkzHzI=1c[k2z1+(m+k2)z2]=zGzIczH,zG,andzIarecollinear.
Commented by ajfour last updated on 30/Jun/17
let me see your book′s solution..
letmeseeyourbookssolution..
Commented by ajfour last updated on 30/Jun/17
Answered by Tinkutara last updated on 30/Jun/17
Let P, Q, and R be the midpoints of  AC, BD, and EF. (Figure). Denote by  S the area of ABCD. As we have seen  the locus of the points M in the interior  of ABCD for which  [MAB] + [MCD] = (1/2) S  is a segment. We see that P and Q  belong to this segment. Indeed,  [PAB] + [PCD] = (1/2)[ABC] + (1/2)[ACD]  = (1/2) S.  and  [QAD] + [QCD] = (1/2)[ABD] + (1/2)[BCD]  = (1/2) S.  Now we have [RAB] = (1/2)[FAB],  since the distance from F to AB is  twice the distance from R to AB.  Similarly, [RCD] = (1/2)[FCD].  We obtain  [RAB] − [RCD] = (1/2)[FAB] − [FCD]  = (1/2) S.  Taking into account the observation in  the solution to Problem 16064, it  follows that P, Q and R are collinear.
LetP,Q,andRbethemidpointsofAC,BD,andEF.(Figure).DenotebyStheareaofABCD.AswehaveseenthelocusofthepointsMintheinteriorofABCDforwhich[MAB]+[MCD]=12Sisasegment.WeseethatPandQbelongtothissegment.Indeed,[PAB]+[PCD]=12[ABC]+12[ACD]=12S.and[QAD]+[QCD]=12[ABD]+12[BCD]=12S.Nowwehave[RAB]=12[FAB],sincethedistancefromFtoABistwicethedistancefromRtoAB.Similarly,[RCD]=12[FCD].Weobtain[RAB][RCD]=12[FAB][FCD]=12S.TakingintoaccounttheobservationinthesolutiontoProblem16064,itfollowsthatP,QandRarecollinear.
Commented by Tinkutara last updated on 30/Jun/17

Leave a Reply

Your email address will not be published. Required fields are marked *