Menu Close

Let-ABCD-be-a-parallelogram-The-points-M-N-and-P-are-chosen-on-the-segments-BD-BC-and-CD-respectively-so-that-CNMP-is-a-parallelogram-Let-E-AN-BD-and-F-AP-BD-Prove-that-AEF-DFP-




Question Number 16879 by Tinkutara last updated on 27/Jun/17
Let ABCD be a parallelogram. The  points M, N and P are chosen on the  segments BD, BC and CD,  respectively, so that CNMP is a  parallelogram. Let E = AN ∩ BD and  F = AP ∩ BD. Prove that  [AEF] = [DFP] + [BEN].
$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{parallelogram}.\:\mathrm{The} \\ $$$$\mathrm{points}\:{M},\:{N}\:\mathrm{and}\:{P}\:\mathrm{are}\:\mathrm{chosen}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{segments}\:{BD},\:{BC}\:\mathrm{and}\:{CD}, \\ $$$$\mathrm{respectively},\:\mathrm{so}\:\mathrm{that}\:{CNMP}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{parallelogram}.\:\mathrm{Let}\:{E}\:=\:{AN}\:\cap\:{BD}\:\mathrm{and} \\ $$$${F}\:=\:{AP}\:\cap\:{BD}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\left[{AEF}\right]\:=\:\left[{DFP}\right]\:+\:\left[{BEN}\right]. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *