Menu Close

Let-ABCD-be-a-parallelogram-Two-points-E-and-F-are-chosen-on-the-sides-BC-and-CD-respectively-such-that-EB-EC-m-and-FC-FD-n-Lines-AE-and-BF-intersect-at-G-Prove-that-the-ratio-




Question Number 19238 by Tinkutara last updated on 07/Aug/17
Let ABCD be a parallelogram. Two  points E and F are chosen on the sides  BC and CD, respectively, such that  ((EB)/(EC)) = m, and ((FC)/(FD)) = n. Lines AE and BF  intersect at G. Prove that the ratio  ((AG)/(GE)) = (((m + 1)(n + 1))/(mn)).
LetABCDbeaparallelogram.TwopointsEandFarechosenonthesidesBCandCD,respectively,suchthatEBEC=m,andFCFD=n.LinesAEandBFintersectatG.ProvethattheratioAGGE=(m+1)(n+1)mn.
Commented by ajfour last updated on 07/Aug/17
BF^(→) =(m+1)b^� +na^�   BG^(→) =λBF^(→) =λ[(m+1)b^� +na^� ] .
BF=(m+1)b¯+na¯BG=λBF=λ[(m+1)b¯+na¯].
Commented by ajfour last updated on 07/Aug/17
Commented by ajfour last updated on 07/Aug/17
let B be origin.  BG^(→) =λ[(m+1)b^� +na^� ]   ....(i)  Also BG^(→) =BE^(→) +EG^(→)    Let EG^(→) =μAE^(→)  ⇒ AG^(→) =(1−μ)AE^(→)   ⇒ BG^(→) =mb^� +μ[(n+1)a^� −mb^� ]   ..(ii)  comparing coefficients of a^�  and b^�   in (i) and (ii):  nλ=(n+1)μ  ; (m+1)λ=m(1−μ)  ⇒   ((m(1−μ))/((n+1)μ))= (((m+1)λ)/(nλ))  ((AG)/(GE))=((1−μ)/μ)= (((m+1)(n+1))/(mn)) .
letBbeorigin.BG=λ[(m+1)b¯+na¯].(i)AlsoBG=BE+EGLetEG=μAEAG=(1μ)AEBG=mb¯+μ[(n+1)a¯mb¯]..(ii)comparingcoefficientsofa¯andb¯in(i)and(ii):nλ=(n+1)μ;(m+1)λ=m(1μ)m(1μ)(n+1)μ=(m+1)λnλAGGE=1μμ=(m+1)(n+1)mn.
Commented by Tinkutara last updated on 07/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *