Menu Close

Let-ABCD-be-a-parallelogram-Two-points-E-and-F-are-chosen-on-the-sides-BC-and-CD-respectively-such-that-EB-EC-m-and-FC-FD-n-Lines-AE-and-BF-intersect-at-G-Prove-that-the-ratio-




Question Number 19238 by Tinkutara last updated on 07/Aug/17
Let ABCD be a parallelogram. Two  points E and F are chosen on the sides  BC and CD, respectively, such that  ((EB)/(EC)) = m, and ((FC)/(FD)) = n. Lines AE and BF  intersect at G. Prove that the ratio  ((AG)/(GE)) = (((m + 1)(n + 1))/(mn)).
$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{parallelogram}.\:\mathrm{Two} \\ $$$$\mathrm{points}\:{E}\:\mathrm{and}\:{F}\:\mathrm{are}\:\mathrm{chosen}\:\mathrm{on}\:\mathrm{the}\:\mathrm{sides} \\ $$$${BC}\:\mathrm{and}\:{CD},\:\mathrm{respectively},\:\mathrm{such}\:\mathrm{that} \\ $$$$\frac{{EB}}{{EC}}\:=\:{m},\:\mathrm{and}\:\frac{{FC}}{{FD}}\:=\:{n}.\:\mathrm{Lines}\:{AE}\:\mathrm{and}\:{BF} \\ $$$$\mathrm{intersect}\:\mathrm{at}\:{G}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{ratio} \\ $$$$\frac{{AG}}{{GE}}\:=\:\frac{\left({m}\:+\:\mathrm{1}\right)\left({n}\:+\:\mathrm{1}\right)}{{mn}}. \\ $$
Commented by ajfour last updated on 07/Aug/17
BF^(→) =(m+1)b^� +na^�   BG^(→) =λBF^(→) =λ[(m+1)b^� +na^� ] .
$$\overset{\rightarrow} {\mathrm{BF}}=\left(\mathrm{m}+\mathrm{1}\right)\bar {\mathrm{b}}+\mathrm{n}\bar {\mathrm{a}} \\ $$$$\overset{\rightarrow} {\mathrm{BG}}=\lambda\overset{\rightarrow} {\mathrm{BF}}=\lambda\left[\left(\mathrm{m}+\mathrm{1}\right)\bar {\mathrm{b}}+\mathrm{n}\bar {\mathrm{a}}\right]\:. \\ $$
Commented by ajfour last updated on 07/Aug/17
Commented by ajfour last updated on 07/Aug/17
let B be origin.  BG^(→) =λ[(m+1)b^� +na^� ]   ....(i)  Also BG^(→) =BE^(→) +EG^(→)    Let EG^(→) =μAE^(→)  ⇒ AG^(→) =(1−μ)AE^(→)   ⇒ BG^(→) =mb^� +μ[(n+1)a^� −mb^� ]   ..(ii)  comparing coefficients of a^�  and b^�   in (i) and (ii):  nλ=(n+1)μ  ; (m+1)λ=m(1−μ)  ⇒   ((m(1−μ))/((n+1)μ))= (((m+1)λ)/(nλ))  ((AG)/(GE))=((1−μ)/μ)= (((m+1)(n+1))/(mn)) .
$$\mathrm{let}\:\mathrm{B}\:\mathrm{be}\:\mathrm{origin}. \\ $$$$\overset{\rightarrow} {\mathrm{BG}}=\lambda\left[\left(\mathrm{m}+\mathrm{1}\right)\bar {\mathrm{b}}+\mathrm{n}\bar {\mathrm{a}}\right]\:\:\:….\left(\mathrm{i}\right) \\ $$$$\mathrm{Also}\:\overset{\rightarrow} {\mathrm{BG}}=\overset{\rightarrow} {\mathrm{BE}}+\overset{\rightarrow} {\mathrm{EG}}\: \\ $$$$\mathrm{Let}\:\overset{\rightarrow} {\mathrm{EG}}=\mu\overset{\rightarrow} {\mathrm{AE}}\:\Rightarrow\:\overset{\rightarrow} {\mathrm{AG}}=\left(\mathrm{1}−\mu\right)\overset{\rightarrow} {\mathrm{AE}} \\ $$$$\Rightarrow\:\overset{\rightarrow} {\mathrm{BG}}=\mathrm{m}\bar {\mathrm{b}}+\mu\left[\left(\mathrm{n}+\mathrm{1}\right)\bar {\mathrm{a}}−\mathrm{m}\bar {\mathrm{b}}\right]\:\:\:..\left(\mathrm{ii}\right) \\ $$$$\mathrm{comparing}\:\mathrm{coefficients}\:\mathrm{of}\:\bar {\mathrm{a}}\:\mathrm{and}\:\bar {\mathrm{b}} \\ $$$$\mathrm{in}\:\left(\mathrm{i}\right)\:\mathrm{and}\:\left(\mathrm{ii}\right): \\ $$$$\mathrm{n}\lambda=\left(\mathrm{n}+\mathrm{1}\right)\mu\:\:;\:\left(\mathrm{m}+\mathrm{1}\right)\lambda=\mathrm{m}\left(\mathrm{1}−\mu\right) \\ $$$$\Rightarrow\:\:\:\frac{\mathrm{m}\left(\mathrm{1}−\mu\right)}{\left(\mathrm{n}+\mathrm{1}\right)\mu}=\:\frac{\left(\mathrm{m}+\mathrm{1}\right)\lambda}{\mathrm{n}\lambda} \\ $$$$\frac{\mathrm{AG}}{\mathrm{GE}}=\frac{\mathrm{1}−\mu}{\mu}=\:\frac{\left(\mathrm{m}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{mn}}\:. \\ $$
Commented by Tinkutara last updated on 07/Aug/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *