Menu Close

let-and-be-the-root-of-the-equation-ax-2-bx-c-0-find-the-equation-whose-roots-are-1-1-and-1-1-




Question Number 172024 by Mikenice last updated on 23/Jun/22
let α and β be the root of the equation  ax^2 +bx+c=0. find the equation whose roots  are ((1/α)+(1/β)) and ((1/α)−(1/β))
letαandβbetherootoftheequationax2+bx+c=0.findtheequationwhoserootsare(1α+1β)and(1α1β)
Answered by Rasheed.Sindhi last updated on 23/Jun/22
Given equation:  ax^2 +bx+c=0  α+β=−(b/a) , αβ=(c/a),α−β=((√(b^2 −4ac))/a)  Required equation:  Sum of the roots=((1/α)+(1/β))+((1/α)−(1/β))         =((α+β)/(αβ))+((−(α−β))/(αβ))  =(((−b/a)−((√(b^2 −4ac)) )/a)/((c/a)))=((−b−(√(b^2 −4ac)) )/c)  Product of roots=((1/α)+(1/β))((1/α)−(1/β))      = (1/α^2 )−(1/β^2 )=((−(α+β)(α−β))/((αβ)^2 ))      =((−(−b/a)(−b−(√(b^2 −4ac)) /c))/((c/a)^2 ))     =−((ab)/c^3 )(b+(√(b^2 −4ac)) )   x^2 −(Sum of the roots)x+(product of the roots)=0  x^2 −(((−b−(√(b^2 −4ac)) )/c))x−((ab)/c^3 )(b+(√(b^2 −4ac)) )=0  c^3 x^2 +c^2 (b+(√(b^2 −4ac)) )x−ab(b+(√(b^2 −4ac)) )=0
Givenequation:ax2+bx+c=0α+β=ba,αβ=ca,αβ=b24acaRequiredequation:Sumoftheroots=(1α+1β)+(1α1β)=α+βαβ+(αβ)αβ=(b/a)(b24ac)/a(c/a)=bb24accProductofroots=(1α+1β)(1α1β)=1α21β2=(α+β)(αβ)(αβ)2=(b/a)(bb24ac/c)(c/a)2=abc3(b+b24ac)x2(Sumoftheroots)x+(productoftheroots)=0x2(bb24acc)xabc3(b+b24ac)=0c3x2+c2(b+b24ac)xab(b+b24ac)=0
Commented by Mikenice last updated on 23/Jun/22
thanks sir
thankssir
Commented by peter frank last updated on 23/Jun/22
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *