Menu Close

Let-and-be-the-root-of-x-2-px-1-2p-2-0-p-R-The-minimum-value-of-4-4-is-




Question Number 21314 by Tinkutara last updated on 20/Sep/17
Let α and β be the root of x^2  + px − (1/(2p^2 )) = 0,  p ∈ R. The minimum value of α^4  + β^4  is
Letαandβbetherootofx2+px12p2=0,pR.Theminimumvalueofα4+β4is
Answered by $@ty@m last updated on 21/Sep/17
α+β=−p   &  αβ=− (1/(2p^2 ))   −−(1)  (a+b)^4 =a^4 +4a^3 b+6a^2 b^2 +4ab^3 +b^4   ⇒a^4 +b^4 =(a+b)^4 −4ab(a^2 +b^2 )−6(ab)^2   ⇒a^4 +b^4 =(a+b)^4 −4ab{(a+b)^2 −2ab}−6(ab)^2   ∴ α^4  + β^4  =(−p)^4 −4(− (1/(2p^2 ))){p^2 −2×((−1)/(2p^2 ))}−6(− (1/(2p^2 )))^2   =p^4 +(2/p^2 )(p^2 +(1/p^2 ))−6×(1/(4p^4 ))  =p^4 +2+(2/p^4 )−(3/(2p^4 ))  ∴ α^4  + β^4  =p^4 +2+(1/(2p^4 ))  −−(2)   Differentiating both sides wrt p  (d/dp)(α^4  + β^4  )=4p^3 −(2/p^5 )  −−(3)  For maxima or minima,  (d/dp)(α^4  + β^4  )=0  4p^3 −(2/p^5 )=0  4p^8 −2=0  p^8 =(1/2)  p^4 =(1/( (√2)))  −−(4)  Differentiating both sides of (3) wrt p  (d^2 /dp^2 )(α^4  + β^4  )=12p^2 +((10)/p^6 )  >0  ∴ α^4  + β^4  is minimum when p^4 =(1/( (√2)))  ⇒ (α^4  + β^4  )_(min.) =[p^4 +2+(1/(2p^4 ))]_(p^4 =(1/( (√2))))   =(1/( (√2)))+2+(1/(2×(1/( (√2)))))  =(1/( (√2)))+2+(1/( (√2)))  =(√2)+2
α+β=p&αβ=12p2(1)(a+b)4=a4+4a3b+6a2b2+4ab3+b4a4+b4=(a+b)44ab(a2+b2)6(ab)2a4+b4=(a+b)44ab{(a+b)22ab}6(ab)2α4+β4=(p)44(12p2){p22×12p2}6(12p2)2=p4+2p2(p2+1p2)6×14p4=p4+2+2p432p4α4+β4=p4+2+12p4(2)Differentiatingbothsideswrtpddp(α4+β4)=4p32p5(3)Formaximaorminima,ddp(α4+β4)=04p32p5=04p82=0p8=12p4=12(4)Differentiatingbothsidesof(3)wrtpd2dp2(α4+β4)=12p2+10p6>0α4+β4isminimumwhenp4=12(α4+β4)min.=[p4+2+12p4]p4=12=12+2+12×12=12+2+12=2+2
Commented by Tinkutara last updated on 21/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *