Question Number 21314 by Tinkutara last updated on 20/Sep/17
$$\mathrm{Let}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{be}\:\mathrm{the}\:\mathrm{root}\:\mathrm{of}\:{x}^{\mathrm{2}} \:+\:{px}\:−\:\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{2}} }\:=\:\mathrm{0}, \\ $$$${p}\:\in\:{R}.\:\mathrm{The}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:\mathrm{is} \\ $$
Answered by $@ty@m last updated on 21/Sep/17
$$\alpha+\beta=−{p}\:\:\:\&\:\:\alpha\beta=−\:\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{2}} }\:\:\:−−\left(\mathrm{1}\right) \\ $$$$\left({a}+{b}\right)^{\mathrm{4}} ={a}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{3}} {b}+\mathrm{6}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +\mathrm{4}{ab}^{\mathrm{3}} +{b}^{\mathrm{4}} \\ $$$$\Rightarrow{a}^{\mathrm{4}} +{b}^{\mathrm{4}} =\left({a}+{b}\right)^{\mathrm{4}} −\mathrm{4}{ab}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\mathrm{6}\left({ab}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{4}} +{b}^{\mathrm{4}} =\left({a}+{b}\right)^{\mathrm{4}} −\mathrm{4}{ab}\left\{\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{ab}\right\}−\mathrm{6}\left({ab}\right)^{\mathrm{2}} \\ $$$$\therefore\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:=\left(−{p}\right)^{\mathrm{4}} −\mathrm{4}\left(−\:\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{2}} }\right)\left\{{p}^{\mathrm{2}} −\mathrm{2}×\frac{−\mathrm{1}}{\mathrm{2}{p}^{\mathrm{2}} }\right\}−\mathrm{6}\left(−\:\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$$$={p}^{\mathrm{4}} +\frac{\mathrm{2}}{{p}^{\mathrm{2}} }\left({p}^{\mathrm{2}} +\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\right)−\mathrm{6}×\frac{\mathrm{1}}{\mathrm{4}{p}^{\mathrm{4}} } \\ $$$$={p}^{\mathrm{4}} +\mathrm{2}+\frac{\mathrm{2}}{{p}^{\mathrm{4}} }−\frac{\mathrm{3}}{\mathrm{2}{p}^{\mathrm{4}} } \\ $$$$\therefore\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:={p}^{\mathrm{4}} +\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{4}} }\:\:−−\left(\mathrm{2}\right)\: \\ $$$${Differentiating}\:{both}\:{sides}\:{wrt}\:{p} \\ $$$$\frac{{d}}{{dp}}\left(\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:\right)=\mathrm{4}{p}^{\mathrm{3}} −\frac{\mathrm{2}}{{p}^{\mathrm{5}} }\:\:−−\left(\mathrm{3}\right) \\ $$$${For}\:{maxima}\:{or}\:{minima}, \\ $$$$\frac{{d}}{{dp}}\left(\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:\right)=\mathrm{0} \\ $$$$\mathrm{4}{p}^{\mathrm{3}} −\frac{\mathrm{2}}{{p}^{\mathrm{5}} }=\mathrm{0} \\ $$$$\mathrm{4}{p}^{\mathrm{8}} −\mathrm{2}=\mathrm{0} \\ $$$${p}^{\mathrm{8}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${p}^{\mathrm{4}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:−−\left(\mathrm{4}\right) \\ $$$${Differentiating}\:{both}\:{sides}\:{of}\:\left(\mathrm{3}\right)\:{wrt}\:{p} \\ $$$$\frac{{d}^{\mathrm{2}} }{{dp}^{\mathrm{2}} }\left(\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:\right)=\mathrm{12}{p}^{\mathrm{2}} +\frac{\mathrm{10}}{{p}^{\mathrm{6}} }\:\:>\mathrm{0} \\ $$$$\therefore\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:{is}\:{minimum}\:{when}\:{p}^{\mathrm{4}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\:\left(\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:\right)_{{min}.} =\left[{p}^{\mathrm{4}} +\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{4}} }\right]_{{p}^{\mathrm{4}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\mathrm{2}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$=\sqrt{\mathrm{2}}+\mathrm{2} \\ $$$$ \\ $$$$ \\ $$
Commented by Tinkutara last updated on 21/Sep/17
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$