Menu Close

let-and-roots-of-z-2-3z-5-0-simlify-U-n-k-0-n-k-k-and-V-n-k-0-n-1-k-1-k-




Question Number 146902 by mathmax by abdo last updated on 16/Jul/21
let α and β roots of  z^2 +3z+5=0  simlify U_n = Σ_(k=0) ^n  (α^k  +β^k )  and V_n =Σ_(k=0) ^n  ((1/α^k )+(1/β^k ))
letαandβrootsofz2+3z+5=0simlifyUn=k=0n(αk+βk)andVn=k=0n(1αk+1βk)
Answered by ArielVyny last updated on 18/Jul/21
z^2 +3z+5=0→(z+(3/2))^2 −(9/4)+((20)/4)=0                                      (z+(3/2))^2 +((11)/4)=0                                       (z+(3/2)−i((√(11))/2))(z+(3/2)+i((√(11))/2))=0  then α=−(3/2)+i((√(11))/2)  and β=−(3/2)−i((√(11))/2)  U_n =Σ_(k=0) ^n (α^k +β^k )  ∣α∣=∣−(3/2)+i((√(11))/2)∣=(√((−(3/2))^2 +(((√(11))/2))^2 ))  ∣α∣=(√((9/4)+((11)/4)))=((√(20))/2)  α=((√(20))/2)(−((3/2)/((√(20))/2))+i(((√(11))/2)/((√(20))/2)))=((√(20))/2)(−(3/( (√(20))))+i((√(11))/( (√(20)))))  α=((√(20))/2)e^(iθ)  tel que  { ((cosθ=−(3/( (√(20)))))),((sinθ=(√((11)/(20))))) :}  β=((√(20))/2)e^(−iθ)    U_n =Σ_(k=0) ^n [(((√(20))/2))^k e^(ikθ) +(((√(20))/2))^k e^(−ikθ) ]  U_n =((1−(((√(20))/2)e^(iθ) )^(n+1) )/(1−(((√(20))/2)e^(iθ) )))+((1−(((√(20))/2)e^(−iθ) )^(n+1) )/(1−(((√(20))/2)e^(−iθ) )))  U_n =((1−((√(20))/2)e^(−iθ) −(((√(20))/2)e^(iθ) )^(n+1) +(((√(20))/2))^(n+2) e^(iθn) )/(1−(((√(20))/2)e^(−iθ) )−(((√(20))/2)e^(iθ) )+((20)/4)))  to be continued....
z2+3z+5=0(z+32)294+204=0(z+32)2+114=0(z+32i112)(z+32+i112)=0thenα=32+i112andβ=32i112Un=k=0n(αk+βk)α∣=∣32+i112∣=(32)2+(112)2α∣=94+114=202α=202(32202+i112202)=202(320+i1120)α=202eiθtelque{cosθ=320sinθ=1120β=202eiθUn=k=0n[(202)keikθ+(202)keikθ]Un=1(202eiθ)n+11(202eiθ)+1(202eiθ)n+11(202eiθ)Un=1202eiθ(202eiθ)n+1+(202)n+2eiθn1(202eiθ)(202eiθ)+204tobecontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *