Menu Close

let-b-C-and-Re-b-gt-0-prove-that-e-iax-x-ib-dx-2ipi-e-ab-and-e-iax-x-ib-dx-0-




Question Number 37356 by math khazana by abdo last updated on 12/Jun/18
let  b ∈C  and Re(b) >0 prove that  ∫_(−∞) ^(+∞)    (e^(iax) /(x−ib))dx =2iπ e^(−ab  )    and  ∫_(−∞) ^(+∞)    (e^(iax) /(x+ib)) dx =0
letbCandRe(b)>0provethat+eiaxxibdx=2iπeaband+eiaxx+ibdx=0
Commented by math khazana by abdo last updated on 12/Jun/18
a>0
a>0
Commented by math khazana by abdo last updated on 13/Jun/18
let ϕ(z) = (e^(iaz) /(z−ib))   so ib is a simple pole of ϕ  with Re(b)>0 ⇒Im(ib)>0 ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,ib)  =2iπ e^(ia(ib)) = 2iπ e^(−ab)   let ψ(z) = (e^(iaz) /(x+ib))  the pole of ψ is −ib  but Im(−ib)<0  so ∫_(−∞) ^(+∞)   ψ(z)dz =0
letφ(z)=eiazzibsoibisasimplepoleofφwithRe(b)>0Im(ib)>0+φ(z)dz=2iπRes(φ,ib)=2iπeia(ib)=2iπeabletψ(z)=eiazx+ibthepoleofψisibbutIm(ib)<0so+ψ(z)dz=0

Leave a Reply

Your email address will not be published. Required fields are marked *