Menu Close

let-be-A-1-1-0-1-B-1-0-1-1-find-e-A-e-B-1-e-A-exponential-matrix-




Question Number 154651 by mathdanisur last updated on 20/Sep/21
let be  A =  ((1,1),(0,1) )  ;  B =  ((1,0),(1,1) )  find  𝛀 = e^A  ∙ (e^B )^(−1)   (e^A  - exponential matrix)
letbeA=(1101);B=(1011)findΩ=eA(eB)1(eAexponentialmatrix)
Answered by TheHoneyCat last updated on 20/Sep/21
let n∈N   ((1,n),(0,1) )× ((1,1),(0,1) )= ((1,(1+n)),(0,1) )  so by a trivual recurence  ∀n∈N A^n = ((1,n),(0,1) )  by definition e^A =Σ_(n∈N) (1/(n!))A^n   so e^A = ((e,e),(0,e) )=e.A  and since B=^t A, e^B =e.^t A  hence 𝛀=(e/e)A(^t A)^(−1)   = ((1,1),(0,1) )× ((1,0),((−1),1) )  = ((0,1),((−1),1) )_■
letnN(1n01)×(1101)=(11+n01)sobyatrivualrecurencenNAn=(1n01)bydefinitioneA=nN1n!AnsoeA=(ee0e)=e.AandsinceB=tA,eB=e.tAhenceΩ=eeA(tA)1=(1101)×(1011)=(0111)◼
Commented by mathdanisur last updated on 20/Sep/21
Very nice Ser, thankyou
VeryniceSer,thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *