Menu Close

Let-be-P-the-set-of-prime-numbers-and-A-P-0-1-Prove-that-n-A-n-n-2-1-2-pi-3-




Question Number 117838 by snipers237 last updated on 13/Oct/20
  Let be P  the set of prime numbers and   A=P∪{0,1}  Prove that   Π_(n∉A)  (n/( (√(n^2 −1)))) =(2/π)(√3)
LetbePthesetofprimenumbersandA=P{0,1}ProvethatnAnn21=2π3
Answered by mindispower last updated on 14/Oct/20
let Π_(n≥2) (n/( (√(n^2 −1))))=I  I^2 =Π_(n≥2) (n/((n−1))).(n/((n+1)))=((2.2)/(1.3)).((3.3)/(2.4)).((4.4)/(3.5))......  I^2 =lim_(N→∞) .Π_(n=2) ^N ((n/(n−1)).(n/(n+1)))=lim_(N→∞) ((2N)/(N+1))    I^2 →2⇒I→(√2),since I≥0 and x→(√(x  )) continus  let P bee set ofrimes numbers  Π_(p∈P) (n^2 /(n^2 −1))=Π_(p∈P) (1/(1−(1/p^2 )))  =Π_(p∈P) (Σ_(s≥0) (1/p^(2s) ))=Σ_(n≥1) (1/n^2 )=ζ(2)=(π^2 /6)  A=P∪{0,1}  Π_(n∉A) (n^2 /(n^2 −1))=Π_(n≥2) (n^2 /(n^2 −1))/(Π_(n∈P) (n^2 /(n^2 −1)))=(2/(π^2 /6))  =((12)/π^2 )  Π_(n∉A) (n/( (√(n^2 −1))))=(√((12)/π^2 ))=((2(√3))/π)
letn2nn21=II2=n2n(n1).n(n+1)=2.21.3.3.32.4.4.43.5I2=limN.Nn=2(nn1.nn+1)=limN2NN+1I22I2,sinceI0andxxcontinusletPbeesetofrimesnumberspPn2n21=pP111p2=pP(s01p2s)=n11n2=ζ(2)=π26A=P{0,1}nAn2n21=n2n2n21/(nPn2n21)=2π26=12π2nAnn21=12π2=23π

Leave a Reply

Your email address will not be published. Required fields are marked *