Menu Close

let-C-x-y-R-2-0-x-1-and-y-2x-2-calculate-C-x-2-ydx-x-2-y-2-dy-




Question Number 36195 by prof Abdo imad last updated on 30/May/18
let  C ={(x,y)∈R^2 / 0≤x≤1 and y=2x^2 }  calculate ∫_C  x^2 ydx +(x^2  −y^2 )dy
letC={(x,y)R2/0x1andy=2x2}calculateCx2ydx+(x2y2)dy
Commented by math khazana by abdo last updated on 18/Aug/18
∫_C    x^2 ydx  +(x^2 −y^2 )dy  =∫_C x^2 (2x^2 )dx   +∫_C (x^2 −4x^4 )(4x)dx  =∫_0 ^1 4x^4  dx  + 4∫_0 ^1   (x^3  −4x^5 )dx  =(4/5)[x^5 ]_0 ^1  + 4 [ (x^4 /4) −(2/3) x^6 ]_0 ^1  =(4/5) +4{(1/4) −(2/3)}  =(4/5) +1 −(8/3) = (9/5) −(8/3) =((27−40)/(15)) =−((13)/(15)) .
Cx2ydx+(x2y2)dy=Cx2(2x2)dx+C(x24x4)(4x)dx=014x4dx+401(x34x5)dx=45[x5]01+4[x4423x6]01=45+4{1423}=45+183=9583=274015=1315.

Leave a Reply

Your email address will not be published. Required fields are marked *