Menu Close

let-C-z-z-1-calculste-C-tanz-dz-




Question Number 125505 by mathmax by abdo last updated on 11/Dec/20
let C={z/∣z∣=1} calculste ∫_C tanz dz
letC={z/z∣=1}calculsteCtanzdz
Answered by mathmax by abdo last updated on 11/Dec/20
∫_C tanz dx =∫_C ((sinz)/(cosz))dz =_(e^(iz)  =w)    ∫_(∣w∣=1)     (((w−w^(−1) )/(2i))/((w+w^(−1) )/2))(dw/(iw))  =(1/i)∫_(∣w∣=1)     ((w−w^(−1) )/(iw(w+w^(−1) )))dw=−∫_(∣w∣=1)    ((w−w^(−1) )/(w^2  +1))dw  =−∫_(∣w∣=1)    ((w^2 −1)/(w(w^2  +1)))dw  let ϕ(w)=((w^2 −1)/(w(w^2  +1))) the poles of w  are 0=i and −i ⇒∫_(∣w∣=1)   ϕ(w)dw=2iπ{Res(ϕ,o)+Res(ϕ,i)+Res(ϕ,−i)}  Res(ϕ,o)=−1  and Res(ϕ,i)=((−2)/(i(2i)))=1  Res(ϕ,−i) =((−2)/(−i(−2i)))=((−2)/(−2))=1 ⇒  ∫_C tanz dz =−2iπ{−1+1+1} =−2iπ
Ctanzdx=Csinzcoszdz=eiz=ww∣=1ww12iw+w12dwiw=1iw∣=1ww1iw(w+w1)dw=w∣=1ww1w2+1dw=w∣=1w21w(w2+1)dwletφ(w)=w21w(w2+1)thepolesofware0=iandiw∣=1φ(w)dw=2iπ{Res(φ,o)+Res(φ,i)+Res(φ,i)}Res(φ,o)=1andRes(φ,i)=2i(2i)=1Res(φ,i)=2i(2i)=22=1Ctanzdz=2iπ{1+1+1}=2iπ

Leave a Reply

Your email address will not be published. Required fields are marked *