Menu Close

Let-complex-number-z-a-cos-2a-sin-i-If-z-2-for-any-R-then-the-range-of-real-number-a-is-




Question Number 148951 by EDWIN88 last updated on 01/Aug/21
Let complex number z=(a+cos θ)+(2a−sin θ)i .  If ∣z∣ ≤2 for any θ∈R then the  range of real number a is ___
Letcomplexnumberz=(a+cosθ)+(2asinθ)i.Ifz2foranyθRthentherangeofrealnumberais___
Answered by iloveisrael last updated on 01/Aug/21
Answered by mr W last updated on 01/Aug/21
(a+cos θ)^2 +(2a−sin θ)^2 ≤2^2 =4  5a^2 +2a(cos θ−2sin θ)−3≤0  5a^2 +2ka−3≤0  k=cos θ−2 sin θ=(√5)cos (θ+tan^(−1) 2)  −(√5)≤k≤(√5)  5a^2 +2(√5)a−3≤0  ⇒a≤((√5)/5)  5a^2 −2(√5)a−3≤0  ⇒a≥−((√5)/5)  ⇒−((√5)/5)≤a≤((√5)/5)
(a+cosθ)2+(2asinθ)222=45a2+2a(cosθ2sinθ)305a2+2ka30k=cosθ2sinθ=5cos(θ+tan12)5k55a2+25a30a555a225a30a5555a55
Commented by puissant last updated on 01/Aug/21
nice prof..
niceprof..

Leave a Reply

Your email address will not be published. Required fields are marked *