Menu Close

let-consider-the-function-f-x-x-x-2-ln-2-sin-cost-dt-calculate-f-x-x-and-f-x-




Question Number 32363 by prof Abdo imad last updated on 23/Mar/18
let consider the function  f(x,θ) =  ∫_x ^x^2  ln( 2+sinθ cost)dt  calculate (∂f/∂x)(x,θ) and  (∂f/∂θ)(x,θ) .
letconsiderthefunctionf(x,θ)=xx2ln(2+sinθcost)dtcalculatefx(x,θ)andfθ(x,θ).
Commented by prof Abdo imad last updated on 25/Mar/18
(∂f/∂x)(x,θ) = 2x ln(2 +sinθ cos(x^2 ))−ln(2+sinθ cosx)  (∂f/∂θ)(x,θ) = ∫_x ^x^2    ((cost cosθ)/(2+costsinθ)) dt  ch. tan((t/2))=ugive  (∂f/∂θ) = ∫_(tan((x/2))) ^(tan((x^2 /2)))    ((cosθ((1−u^2 )/(1+u^2 )))/(2+sinθ((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  = ∫_(tan((x/2))) ^(tan((x^2 /2)))      (((1−u^2 )cosθ)/((1+u^2 )(2 +(1−u^2 )sinθ)))du  = ∫_(tan((x/2))) ^(tan((x^2 /2)))    ((α −αu^2 )/((1+u^2 )(2+β −βu^2 ))) du whit α=cosθ  and β=sinθ  =∫_(tan((x/2))) ^(tan((x^2 /2))  )      ((−αu^2  +α)/((1+u^2 )(−βu^2 +β+2)))du let decompose  f(u) =  ((αu^2  −α)/((1+u^2 )(βu^2 −β−2)))  =  ((αu^2  −α)/(β(1+u^2 )( u^2  −((√((β+2)/β)))^2 )))  =  (a/((u−(√((β+2)/β)))))  +(b/(u+(√((β+2)/β))))  + ((cu +d)/(u^2  +1)) ...be  conyinued....
fx(x,θ)=2xln(2+sinθcos(x2))ln(2+sinθcosx)fθ(x,θ)=xx2costcosθ2+costsinθdtch.tan(t2)=ugivefθ=tan(x2)tan(x22)cosθ1u21+u22+sinθ1u21+u22du1+u2=tan(x2)tan(x22)(1u2)cosθ(1+u2)(2+(1u2)sinθ)du=tan(x2)tan(x22)ααu2(1+u2)(2+ββu2)duwhitα=cosθandβ=sinθ=tan(x2)tan(x22)αu2+α(1+u2)(βu2+β+2)duletdecomposef(u)=αu2α(1+u2)(βu2β2)=αu2αβ(1+u2)(u2(β+2β)2)=a(uβ+2β)+bu+β+2β+cu+du2+1beconyinued.

Leave a Reply

Your email address will not be published. Required fields are marked *