Question Number 32363 by prof Abdo imad last updated on 23/Mar/18
$${let}\:{consider}\:{the}\:{function} \\ $$$${f}\left({x},\theta\right)\:=\:\:\int_{{x}} ^{{x}^{\mathrm{2}} } {ln}\left(\:\mathrm{2}+{sin}\theta\:{cost}\right){dt} \\ $$$${calculate}\:\frac{\partial{f}}{\partial{x}}\left({x},\theta\right)\:{and}\:\:\frac{\partial{f}}{\partial\theta}\left({x},\theta\right)\:. \\ $$
Commented by prof Abdo imad last updated on 25/Mar/18
$$\frac{\partial{f}}{\partial{x}}\left({x},\theta\right)\:=\:\mathrm{2}{x}\:{ln}\left(\mathrm{2}\:+{sin}\theta\:{cos}\left({x}^{\mathrm{2}} \right)\right)−{ln}\left(\mathrm{2}+{sin}\theta\:{cosx}\right) \\ $$$$\frac{\partial{f}}{\partial\theta}\left({x},\theta\right)\:=\:\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\frac{{cost}\:{cos}\theta}{\mathrm{2}+{costsin}\theta}\:{dt}\:\:{ch}.\:{tan}\left(\frac{{t}}{\mathrm{2}}\right)={ugive} \\ $$$$\frac{\partial{f}}{\partial\theta}\:=\:\int_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} ^{{tan}\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)} \:\:\:\frac{{cos}\theta\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{2}+{sin}\theta\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\:\int_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} ^{{tan}\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)} \:\:\:\:\:\frac{\left(\mathrm{1}−{u}^{\mathrm{2}} \right){cos}\theta}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{2}\:+\left(\mathrm{1}−{u}^{\mathrm{2}} \right){sin}\theta\right)}{du} \\ $$$$=\:\int_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} ^{{tan}\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)} \:\:\:\frac{\alpha\:−\alpha{u}^{\mathrm{2}} }{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{2}+\beta\:−\beta{u}^{\mathrm{2}} \right)}\:{du}\:{whit}\:\alpha={cos}\theta \\ $$$${and}\:\beta={sin}\theta \\ $$$$=\int_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} ^{{tan}\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)\:\:} \:\:\:\:\:\frac{−\alpha{u}^{\mathrm{2}} \:+\alpha}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(−\beta{u}^{\mathrm{2}} +\beta+\mathrm{2}\right)}{du}\:{let}\:{decompose} \\ $$$${f}\left({u}\right)\:=\:\:\frac{\alpha{u}^{\mathrm{2}} \:−\alpha}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\beta{u}^{\mathrm{2}} −\beta−\mathrm{2}\right)} \\ $$$$=\:\:\frac{\alpha{u}^{\mathrm{2}} \:−\alpha}{\beta\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\:{u}^{\mathrm{2}} \:−\left(\sqrt{\frac{\beta+\mathrm{2}}{\beta}}\right)^{\mathrm{2}} \right)} \\ $$$$=\:\:\frac{{a}}{\left({u}−\sqrt{\frac{\beta+\mathrm{2}}{\beta}}\right)}\:\:+\frac{{b}}{{u}+\sqrt{\frac{\beta+\mathrm{2}}{\beta}}}\:\:+\:\frac{{cu}\:+{d}}{{u}^{\mathrm{2}} \:+\mathrm{1}}\:…{be} \\ $$$${conyinued}…. \\ $$